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Abstract— In this paper, we develop a method for learning
a control policy guaranteed to satisfy an affine state constraint
of high relative degree in closed loop with a black-box system.
Previous reinforcement learning (RL) approaches to satisfy
safety constraints either require access to the system model, or
assume control affine dynamics, or only discourage violations
with reward shaping. Only recently have these issues been
addressed with POLICEd RL, which guarantees constraint
satisfaction for black-box systems. However, this previous work
can only enforce constraints of relative degree 1. To address
this gap, we build a novel RL algorithm explicitly designed
to enforce an affine state constraint of high relative degree in
closed loop with a black-box control system. Our key insight
is to make the learned policy be affine around the unsafe set
and to use this affine region to dissipate the inertia of the
high relative degree constraint. We prove that such policies
guarantee constraint satisfaction for deterministic systems while
being agnostic to the choice of the RL training algorithm. Our
results demonstrate the capacity of our approach to enforce
hard constraints in the Gym inverted pendulum and on a space
shuttle landing simulation.

I. INTRODUCTION

The lack of safety guarantees in reinforcement learning
(RL) has been impeding its wide deployment in real-world
settings [1]. Safety in RL is traditionally captured by state
constraints preventing the system from entering unsafe re-
gions [2]. This issue has been investigated by numerous
approaches and most commonly under the framework of con-
strained Markov decision processes (CMDPs) [3], [4], [5].
CMDPs only encourage policies to respect safety constraints
by penalizing the expected violations [6]; however, they
do not provide any satisfaction guarantees [7]. For safety-
critical tasks, such as autonomous driving or human-robot
interactions, safety guarantees are primordial and require the
learned policy to maintain constraint respect.

A few RL attempts at learning provably safe policies
have involved control barrier functions (CBFs) [8], backward
reachable sets [9], and projection of control inputs onto safe
sets [10], [11]. However, all these methods require precise
knowledge of the system dynamics, which is usually not
available in RL. To circumvent this issue and study black-
box systems without an analytical model of the dynamics,
the common approach has been to learn safety certificates
[12], [13], [14]. Yet, by learning to approximate CBFs, the
formal safety guarantees of these methods hinge upon the
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Fig. 1: Phase portrait of constrained output y illustrating our High Relative
Degree POLICEd RL method on a system of relative degree 2. To prevent
states from violating constraint y ≤ ymax (red dashed line), our policy
guarantees that trajectories entering buffer region B (blue) cannot leave it
through its upper bound (blue dotted line). Our policy makes ÿ sufficiently
negative in buffer B to bring ẏ to 0 in all trajectories entering B. Once
ẏ < 0, trajectories cannot approach the constraint. Due to the states’ inertia,
it is physically impossible to prevent all constraint violations. For instance,
y = ymax, ẏ >> 1 will yield y > ymax at the next timestep. Hence, we
only aim at guaranteeing the safety of trajectories entering buffer B.

quality of their CBF approximation. More reliable safety
guarantees have been established by recent work [15], whose
POLICEd RL approach designs a repulsive buffer to enforce
constraint satisfaction in closed-loop with a black-box sys-
tem. However, work [15] along with most other safe RL
works such as [10], [11], [12], [14] are limited to constraints
of relative degree 1. In contrast, our approach enforces
inviolable constraints of high relative degree in closed-loop
with a learned control policy while exclusively using a black-
box model of the system dynamics.

The relative degree of a constraint describes how many
times a constraint needs to be differentiated before a control
input appears in its expression. The higher the relative
degree, the more inertia the constraint has and the more
challenging its satisfaction is [16]. Inspired by the recent
extensions of CBFs to high relative degrees [17], [18], [16],
we propose a backstepping inspired approach [19], which
is compatible with systems non-affine in control and with
black-box systems contrary to these CBF methods.

To learn our safe controller, we draw inspiration from the
POLICEd RL method of [15] and transform the state space
surrounding the affine state constraint into a buffer region
that cannot be crossed. We overcome the major limitation
of [15] by extending POLICEd RL to constraints of high
relative degree. To dissipate the inertia of this high relative
degree constraint, our key insight is to extend the buffer
into the dimensions of the unactuated derivatives of the state
constraint. While this task appears arduous, these derivatives
are usually accessible since related to the states. In this buffer
region, we train the policy to dissipate the state’s inertia



to progressively slow its progression towards the constraint,
as illustrated in Fig. 1. This controller guarantees that tra-
jectories entering the buffer do not violate the constraint.
Since inertia cannot be dissipated instantly, some constraint
violations are physically impossible to prevent. Inspired by
[15], to easily verify the dissipative character of the controller
in the buffer, we use the POLICE algorithm [20] to generate
an affine policy over the buffer region.

In summary, our contributions in this work are as follows.
1) We introduce High Relative Degree POLICEd RL, a novel

RL framework to guarantee satisfaction of an affine state
constraint of high relative degree using a black-box model
of the system in closed-loop with a trained policy.

2) We provide comprehensive proof, and we detail our
method to evaluate our trained policy while directly guar-
anteeing constraint satisfaction.

3) We demonstrate the safety guarantees of our approach
in a number of simulation studies involving an inverted
pendulum and a space shuttle landing.
The remainder of this work is organized as follows. In

Section II, we introduce our problem formulation along with
our framework. In Section III, we establish the theoretical
guarantees of our approach in enforcing the satisfaction
of a high relative degree constraint. In Section IV, we
illustrate our method on the Gym inverted pendulum and
on a space shuttle landing scenario. Appendices A and B
contain supporting lemmata and implementation details for
our simulations.

Notation: We denote the positive integer interval from a ∈
N to b ∈ N inclusive by [[a, b]]. We denote the component
i ∈ [[1, n]] of a vector x ∈ Rn by xi and the vector composed
of components i to j > i by xi:j . The set of nonnegative
real numbers is R+. We denote the kth time derivative of a
function y by y(k) = dky

dtk
. If x, y ∈ Rn, then x ≤ y denotes

the element-wise inequalities xi ≤ yi for all i ∈ [[1, n]].

II. FRAMEWORK

We consider a black-box deterministic system

ẋ(t) = f
(
x(t), u(t)

)
, u(t) ∈ U , x(0) ∈ X , (1)

with state space X ⊆ Rn and admissible control set U ⊆
Rm. We consider dynamics (1) to be an implicit black-box,
meaning that we can evaluate f but we do not have any
explicit knowledge or analytical form of f . This is similar
to the online RL setting where f is a simulator or a robot.

We assume that the system safety constraint is captured
by a single affine inequality on output

y(t) := Cx(t) ≤ ymax, for all t ≥ 0, (2)

with C ∈ R1×n and ymax ∈ R. We model our deterministic
feedback policy u(t) = πθ

(
x(t)

)
∈ U by a deep neural

network parameterized by θ. Our objective is to train policy
πθ to respect constraint (2) and maximize the following
expected discounted reward

max
θ

G(πθ) := E
x0∼ρ0

∫ ∞

0

γtR
(
x(t), πθ(x(t))

)
dt s.t. (2), (3)

where γ ∈ (0, 1] is a discount factor, R a reward function,
and ρ0 the distribution of initial states. The only stochasticity
in our setting comes from the initial state sampling x0 ∼ ρ0.
We emphasize that constraint (2) is a hard constraint to be
respected at all times. Contrary to previous work [15], we
assume that constraint (2) has a relative degree at least 2.

Definition 1. The relative degree r of output y (2) for
dynamics (1) is the order of its input-output relationship,
i.e., r := min

{
p ∈ N : ∂

∂u
∂py
∂tp (t) ̸= 0 for all x ∈ X

}
[21].

In simpler words, the relative degree is the minimal
number of times output y has to be differentiated until control
input u appears. As argued in [22], relative degree r can be
obtained by first-order principles without the knowledge of
dynamics f . Hence, knowing r is compatible with our black-
box model of f . Assuming r ≥ 2, we have

∂

∂u

∂y(t)

∂t
=

∂ẏ(t)

∂u
=

∂

∂u
Cẋ(t) = C

∂f(x, u)

∂u
= 0, (4)

for all x ∈ X . Taking one further time derivative yields

ÿ(t) = Cẍ(t) = C
∂f(x, u)

∂t

= C
∂f(x, u)

∂x

∂x

∂t
+ C

∂f(x, u)

∂u︸ ︷︷ ︸
=0 from (4)

∂u

∂t
= CDf(x, u),

where Df(x, u) := ∂f(x,u)
∂x f(x, u) differs from a Lie deriva-

tive since f depends not only on x but also on u since (1)
is not control affine. Iterating this process yields

y(k)(t) = CDk−1f(x, u)

for all k ∈ [[0, r − 1]] with

Dk+1f :=
∂Dkf

∂x
f and D0f := f.

Having r ≥ 2 means that u does not appear in the
expression of ẏ. Thus, a change in control input will not
immediately modify y. We follow [16] and refer to the unac-
tuated derivatives of y

(
y(k) for k ∈ [[1, r−1]]

)
as generalized

inertia, by analogy to inertia in kinematic systems. To enforce
constraint (2), we need to dissipate this generalized inertia
before reaching constraint line y = ymax. To easily assess
this generalized inertia, we make the following assumption.

Assumption 1. There exists an invertible map T between
state x ∈ Rn and s ∈ Rn, whose first r components are
s1 = y, s2 = ẏ, ..., sr = y(r−1), where y is output (2).
Transformation T (x) = s gives rise to an equivalent state
space S := T (X ).

Note that this is a rather mild assumption. Indeed, a
transformation s = T (x) always exists since y = Cx and
thus sk+2 = y(k+1) = C ∂kẋ

∂t = C ∂kf
∂t (x, u). Assumption 1

is required for the invertibility of T and the fact that T can
be determined without knowledge of black-box dynamics f .
For typical control systems as studied in Section IV, T is a
simple function satisfying Assumption 1. Following Assump-
tion 1, we now have two equivalent state representations:



x denotes the original state of system (1), while s denotes
the transformed state composed of the iterated derivatives of
constrained output y.

We can now formally define our problem of interest.

Problem 1. Given:
1) black-box control system (1);
2) state space X ⊆ Rn;
3) admissible input set U ⊆ Rm;
4) affine constraint (2) of relative degree r ≥ 2;
5) neural network policy πθ(x) parameterized by θ;
6) invertible transformation T of Assumption 1;

Our goal is to solve θ∗ = argmax
θ

G(πθ) s.t. (1) and (2).

III. CONSTRAINED REINFORCEMENT LEARNING

In this section, we devise a method to solve Problem 1
by designing a buffer preventing trajectories from breaching
the constraint, as illustrated in Fig. 1. To enforce high
relative degree constraint y ≤ ymax, our safe controller must
dissipate its generalized inertia before reaching constraint
line y = ymax. We force this dissipation in a buffer region
B as illustrated in Fig. 1. We will first build such a buffer,
then show that trajectories entering B cannot breach the
constraint.

A. Buffer Design

We formalize the concept of Fig. 1 and build buffer B
as the state space region where our controller will dissipate
generalized inertia ẏ,...,y(r−1) to prevent violation of con-
straint (2). To adapt B to this task, we design it in state
space S , because Assumption 1 states that the coordinates
of S are the generalized inertia components y(k).

Assume we can choose s ∈ B and let us investigate what
bounds the components of s should satisfy to remain in B.
Following Assumption 1, the first component of s is s1 = y,
and thus should satisfy s1 ≤ ymax to respect constraint (2).
We choose a lower bound for s1 as ymin < ymax.

Following Assumption 1, the second component of s is
s2 = ẏ. To maintain y ≤ ymax, we need ẏ ≤ 0 when y =
ymax. Requiring ẏ ≤ 0 for all s ∈ B is the approach of [15]
but restricts B to only include states already moving away
from upper bound ymax, whereas we want to slow down and
stop trajectories going towards ymax. Thus, we must allow
states with ẏ > 0 in B. Let ẏmax > 0 be the maximal velocity
in B. Our controller will later require B to be a polytope.
Thus, we naturally define the upper bound on ẏ = s2 as

smax
2 := β(ymax − y) with β :=

ẏmax

ymax − ymin
, (5)

so that smax
2 (y) = ẏmax when y = ymin and smax

2 = 0
when y = ymax, as illustrated in Fig. 1. We choose a lower
bound smin

2 ≤ 0 so that smin
2 ≤ smax

2 (y) for all y. Note that

s2 = ẏ ≤ smax
2 (y) = β(ymax − y) (6)

is a differential inequality on y that we designed to maintain
y ≤ ymax. To enforce (6) we need a control input, but
only y(r) is actuated. Our key idea is then to make our

controller enforce a differential inequality on y(r), whose
iterated integrations will lead to (6).

Working backwards, we differentiate (6) into ÿ ≤ −βẏ,
i.e., s3 ≤ −βs2. Thus, we choose bounds smin

3 <
smax
3 (s) := −βs2. Iterating this process until y(r) leads to

lower and upper bounds b and b on the first r components
of s ∈ B. Then, s1:r ∈

[
b, b(s)

]
element-wise with

b :=
[
ymin, smin

2 , smin
3 , . . . , smin

r

]
, (7)

b(s) :=
[
ymax, β(ymax − s1), −βs2, . . . , −βsr−1

]
. (8)

The remaining n−r components of s ∈ B are not derivatives
of y and thus are not involved in the constraint enforcement
process. As mentioned previously, we will need B to be
a polytope, hence we choose to bound the last n − r
components of s ∈ B by a polytope P ⊂ Rn−r so that

B :=
{
s ∈ S : s1:r ∈

[
b, b(s)

]
, sr+1:n ∈ P

}
. (9)

Note that the bounds we just derived only delimit region B
in S, but without adequate control input, trajectories will not
respect these bounds. Similarly, the differential inequalities
obtained above only reflect the desired dynamics that we
want to enforce with our controller. On the other hand,
bounds s1:r ≥ b and sr+1:n ∈ P will not be specifically
enforced by the controller, but should be designed to en-
compass all trajectories to be safeguarded from ymax.

By design, buffer B of (9) is then a compact convex
polytope with a finite number N of vertices gathered in the
set V

(
B
)
:=

{
v1, . . . , vN

}
1.

B. Controller Design
Let us now design a controller to maintain trajectories

in buffer B. Inspired by [15], we model our control policy
with a POLICEd neural network µθ := πθ ◦ T : S → U ,
with continuous piecewise affine activation functions such as
ReLU [20]. This restriction is of little concern as ReLU is
the most commonly used activation function. This POLICEd
architecture allows us to make the outputs of µθ affine over
a polytopic region of state space S, which we chose to be B.
Then, there exist matrices Dθ ∈ Rm×n and eθ ∈ Rm such
that

µθ(s) = Dθs+ eθ for all s ∈ B. (10)

Since buffer B and policy µθ are both in space S and
not X , we need to calculate the state dynamics in S. State
s = T (x) following controller µθ satisfies

ṡ =
∂T

∂t
(x) =

∂T

∂x

∂x

∂t
=

∂T

∂x
(x)f

(
x, µθ

(
T (x)

))
.

Then, by defining the map

f̃(s;µθ) :=
∂T

∂x

(
T−1(s)

)
f
(
T−1(s), µθ(s)

)
,

we can write ṡ(t) = f̃
(
s(t);µθ

)
. We are mostly interested

in the dynamics of the actuated derivative of output y:

y(r)(t) =
∂y(r−1)

∂t
(t) =

∂sr
∂t

(t) = f̃r
(
s(t);µθ

)
, (11)

1The number of vertices of B is related to the Fibonacci sequence (see
Lemma 5).



where sr and f̃r denote the rth component of s and f̃
respectively. If dynamics (11) were known and affine, their
coupling with affine policy µθ on B would lead to a simple
constraint enforcement process. However, dynamics (11) are
a black-box and possibly nonlinear. We will thus use an affine
approximation of (11) inside using the following definition.

Definition 2. An approximation measure ε of dynamics (11)
in buffer (9) is any ε ≥ 0 for which there exists any matrices
A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn such that∣∣f̃r(s;µθ

)
− C

(
As+Bµθ(s) + c

)∣∣ ≤ ε, (12)

for all s ∈ B.

Intuitively, the value of ε quantifies how far from affine is
function f̃r over buffer B. Having access to map T , controller
µθ and to a black-box model of f , we can evaluate f̃r
and compute ε using linear least square approximation [23].
Since ε is estimated from data, it might not verify (12) for
some s ∈ B absent from the dataset. To satisfy Definition 2,
we need to over-approximate ε since any upper bound will
verify (12). With such an upper bound, we will guarantee
the satisfaction of constraint (2) with actual dynamics (1).

We now establish our central result demonstrating how
to guarantee satisfaction of constraint (2) by black-box
environment (1) armed only with an approximation measure
ε and without knowing A, B, c, f , or f̃r.

Theorem 1. Assume that for some approximation measure
ε, dissipation condition

f̃r(v;µθ) ≤ −2ε− βvr, (13)

holds for all v ∈ V
(
B
)
, where vr is the rth component of v

and β comes from (5). If a trajectory s steered by µθ verifies

s1:r(t0) < b
(
s(t0)

)
(14)

for some t0 ≥ 0, and satisfies

s1:r(t) ≥ b and sr+1:n(t) ∈ P (15)

for all t ∈ [t0, t1), then s1:r(t) < b
(
s(t)

)
for all t ∈ [t0, t1).

In simpler words, Theorem 1 guarantees that trajectories
entering buffer B below upper bound b cannot exit B through
b as long as dissipation condition (13) is satisfied. Theorem 1
generates the bent arrows of the flow illustrated in Fig. 1
which prevent trajectories from violating constraint (2). The
major strength of our approach is that dissipation condition
(13) only needs to be enforced at the vertices of B and thus
does not require knowledge of f or f̃r.

Proof of Theorem 1. The intuition behind this proof is to use
the convexity of buffer B and affine approximation (12) to
extend condition (13) to the entire B. By combining this
condition with the specific design of upper bound (8), we
can derive bounds on the output derivatives y, ..., y(r−1) and
show that they cannot cross upper bound b.

We divide the proof into three lemmas. First, we show in
Lemma 1 that condition (13) yields ṡr ≤ −βsr for all s in B.
This condition combined in Lemma 2 with (15) yields the

differential inequalities to be respected by y, ẏ,..., y(r−1)

as long as trajectory s remains in B. In Lemma 3 these
differential equations are then paired with initial conditions
(14) to obtain s1:r(t) < b

(
s(t)

)
for all t ∈ [t0, t1).

C. Supporting Lemmata

We now extend dissipation condition (13) from the vertices
of buffer B to the whole set B.

Lemma 1. If for some approximation measure ε, condi-
tion (13) holds for all v ∈ V(B), then controller µθ yields

ṡr(t) ≤ −βsr(t), i.e., y(r)(t) ≤ −βy(r−1)(t), (16)

for all s(t) ∈ B.

Proof. Since ε is an approximation measure, there exist A,
B and c verifying (12) which we evaluate at s = v ∈ V

(
B
)

C
(
Av +Bµθ(v) + c

)
≤

∣∣C(
Av +Bµθ(v) + c

)
− f̃r(v;µθ)

∣∣+ f̃r(v;µθ)

≤ ε− 2ε− βvr, (17)

where the first inequality is a triangular inequality, the second
follows from (12) and (13). Using the convexity of polytope
B of vertices V

(
B
)
=

{
v1, . . . , vN

}
, for any s ∈ B, there

exist α1, . . . , αN ∈ R+ such that
∑N

k=1 α
k = 1 and s =∑N

k=1 α
kvk. Controller (10) applied at s ∈ B yields

C
(
As+Bµθ(s) + c

)
= C

(
As+B(Dθs+ eθ) + c

)
= C(A+BDθ)s+ C(Beθ + c)

= C(A+BDθ)

N∑
k=1

αkvk + C(Beθ + c)

N∑
k=1

αk

=

N∑
k=1

αkC
(
(A+BDθ)v

k +Beθ + c
)

=

N∑
k=1

αkC
(
Avk +Bµθ(v

k) + c
)

≤
N∑

k=1

αk
(
− ε− βvkr

)
= −ε

N∑
k=1

αk − β

N∑
k=1

αkvkr

= −ε− βsr, (18)

where the only inequality comes from (17) on each vertex
vk and the last equality stems from the linear decomposition
of component r of state s between component r of vertices
vk. For any state s ∈ B, (11) yields

y(r) = f̃r(s, µθ)

≤
∣∣f̃r(s, µθ)−C

(
As+Bµθ(s)+c

)∣∣+C
(
As+Bµθ(s) + c

)
≤ ε− ε− βsr = −βy(r−1),

where we first use the triangular inequality, then (12) and
(18), and the last equality comes from the definition of state
s in Assumption 1.

Lemma 1 uses the convexity of B and affine approxima-
tion (12) to extend (13), valid only at the vertices of B, into
(16), valid all over B. Without the POLICE algorithm [20],



µθ would not be affine over B, and dissipation condition (13)
would need to be enforced everywhere on the buffer at a
prohibitive computational cost.

Lemma 2. If (16) holds for all s ∈ B, s(t0) ∈ B, and (15)
holds for all t ∈ [t0, t1) for some t1 > t0 ≥ 0, then

y(t) ≤
(
y(t0)− ymax

)
e−β(t−t0) + ymax (19)

and
y(k)(t) ≤ y(k)(t0)e

−β(t−t0) (20)

for all k ∈ [[1, r − 1]] and all t ∈ [t0, t1).

Proof. We apply the comparison lemma of [24] to
differential inequality (16), which yields y(r−1)(t) ≤
y(r−1)(t0)e

−β(t−t0).
Initial condition s(t0) ∈ B yields

sr(t0) = y(r−1)(t0) ≤ −βsr−1(t0) = −βy(r−2)(t0).

Define function g(t) := y(r−1)(t) + βy(r−2)(t). Then, (16)
is equivalent to ġ(t) ≤ 0 and our initial condition is
g(t0) ≤ 0. Therefore, g(t) ≤ 0 for all t ∈ [t0, t1), i.e.,
y(r−1)(t) ≤ −βy(r−2)(t). Using the comparison lemma of
[24], we can solve this differential inequality and obtain
y(r−2)(t) ≤ y(r−2)(t0)e

−β(t−t0).
We can iterate this process for k ∈ {r − 3, . . . , 1} and

obtain y(k+1)(t) ≤ −βy(k)(t), which yields y(k)(t) ≤
y(k)(t0)e

−β(t−t0) for all t ∈ [t0, t1).
For k = 1, we thus have ÿ(t)+βẏ(t) ≤ 0. Initial condition

s(t0) ∈ B yields ẏ(t0) ≤ β̇
(
ymax − y(t0)

)
, or equivalently

ẏ(t0)+βy(t0) ≤ βymax. As previously, with g(t) := ẏ(t)+
βy(t), we have ġ(t) ≤ 0 and g(t0) ≤ βymax. Thus, g(t) ≤
βymax, i.e., ẏ(t) + βy(t) ≤ βymax for all t ∈ [t0, t1). We
solve this differential inequality using the comparison lemma
of [24] and obtain (19) for all t ∈ [t0, t1).

Lemma 2 used (16) and upper bound b of (8) to obtain
the differential equations verified by the output derivatives
in B. We will now use initial condition (14) to show that
trajectories cannot leave B through its upper bound b.

Lemma 3. If (16) holds for all s ∈ B, (19) and (20) hold
for all t ∈ [t0, t1), then (14) implies s1:r(t) ≤ b(s(t)) for all
t ∈ [t0, t1).

Proof. Condition s(t0) < b(s(t0)) yields y(t0) < ymax. This
initial condition combined with (19) leads to y(t) < ymax

for all t ∈ [t0, t1), i.e., s1(t) < b(s(t))1.
Initial condition s2(t0) < b(s(t0))2 yields ẏ(t0) < β(ymax−
y(t0)). Starting from (20) for k = 1, we have

ẏ(t) ≤ ẏ(t0)e
−β(t−t0) < β(ymax − y(t0))e

−β(t−t0) (21)

for all t ∈ [t0, t1). Reorganizing (19) leads to
−y(t0)e

−β(t−t0) ≤ −y(t)+ymax(1−e−β(t−t0)), which can
be combined with (21) into

ẏ(t) < β
(
ymaxe

−β(t−t0) − y(t) + ymax(1− e−β(t−t0))
)

< β
(
ymax − y(t)

)
e−β(t−t0),

i.e., s2(t) < b(s(t))2 for all t ∈ [t0, t1).

Fig. 2: The inverted pendulum Gym environment [25] annotated with cart
position p, pendulum angle θ, and buffer B.

Similarly for k ∈ [[2, r − 1]], (20) combined with initial
condition y(k)(t0) < −βy(k−1)(t0) leads to

y(k)(t) ≤ y(k)(t0)e
−β(t−t0) < −βy(k−1)(t0)e

−β(t−t0) (22)

for all t ∈ [t0, t1). Reversing (20) at k − 1 leads to
−y(k−1)(t0)e

−β(t−t0) ≤ −y(k−1)(t), which can be com-
bined with (22) into y(k)(t) < −βy(k−1)(t), i.e., sk+1(t) <
b(s(t))k+1 for all t ∈ [t0, t1).

Remark 1. Control set U of (1) might prevent the existence
of an admissible stabilizing policy µθ. That is why we use
RL to find policy µθ and we verify its safety with Theorem 1.

Now that we have established our central result, we will
illustrate its implementation on two numerical simulations.

IV. NUMERICAL SIMULATIONS

A. Gym Inverted Pendulum

We consider the Inverted Pendulum Gym environment [25]
with the MuJoCo dynamics engine [26] as illustrated in
Fig. 2. The environment state x is composed, in that order,
of the cart position p, the pole angle θ, and their derivatives
ṗ and θ̇. The objective within this environment is to maintain
the pole close to the vertical, i.e., |θ| ≤ 0.2 rad. Let us focus
on enforcing the upper constraint, y := θ ≤ 0.2 rad. This
constraint has a relative degree r = 2 since the control input
is the force exerted on the cart, which directly impacts θ̈.

Following our choice of y = θ, we define state s = T (x)

s :=


y
ẏ
s3
s4

 =


θ

θ̇
p
ṗ

 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0



p
θ
ṗ

θ̇

 = Tx.

Transformation T is linear and invertible, hence verifying
Assumption 1. Additionally, we obtain T without violating
the black-box assumption on dynamics f , since T only
reorders the states.

Following Section III-A, we will now design buffer B,
whose architecture should help dissipate the inertia of tra-
jectories arriving at θ = ymin with velocities θ̇ ≤ ẏmax. We
choose ymax := 0.2 rad, ymin = 0.1 rad, smin

2 = 0 rad/s
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Fig. 3: Phase portrait of
(
θ, θ̇

)
for the inverted pendulum. None of the

POLICEd trajectories (blue) entering buffer B (green) cross constraint line
θ = 0.2 rad (dashed red), whereas some of the baseline trajectories do
(dotted orange). Our approach guarantees that a pole arriving at θ = 0.1
rad with a velocity θ̇ < 1 rad/s will satisfy θ ≤ 0.2 rad. We do not guarantee
the safety of POLICEd trajectories not entering the buffer.

and ẏmax = 1 rad/s, and define buffer

B :=
{
s ∈ S : s1 = y = θ ∈ [0.1, 0.2],

s2 = ẏ = θ̇ ∈ [0, 2− 10θ],

s3 = p ∈ [−0.9, 0.9],

s4 = ṗ ∈ [−1, 1]
}
.

This choice of B allows only θ̇ = 0 rad/s when θ = 0.2 rad,
hence preventing θ in B from growing past 0.2 rad. Here
polytope P of (9) is P := [−0.9, 0.9]× [−1, 1].

Following Definition 2, we sample states in B and perform
a linear regression on θ̈ to obtain an approximation measure
ε = 0.53. We model controller µθ with a deep neural network
trained to stabilize the pole at θ = 0 in a reinforcement
learning fashion using proximal policy optimization (PPO)
[27]. We train two such policies, one being a standard multi-
layer perceptron (MLP) to form a baseline, and the other
having POLICEd layers [20] enforcing affine condition (10).
Both policies follow the same training and are encouraged to
enforce dissipation condition (13) at the vertices of B, which
translates to θ̈ ≤ −2ε− 10θ̇.

To illustrate Theorem 1, assume that our POLICEd con-
troller µθ enforces dissipation condition (13) and let us
consider a trajectory s entering buffer B at time t0. If
initial state condition (14) holds, i.e., if θ(t0) < 0.2 rad
and θ̇(t0) < 2 − 10θ(t0), then as long as θ(t) ≥ 0.1 rad,
θ̇(t) ≥ 0 rad/s, and

(
p(t), ṗ(t)

)
∈ P , we have θ(t) < 0.2

rad and θ̇(t) < 2 − 10θ(t). These equations generate the
phase portrait of Fig. 3, which successfully reproduces the
desired behavior exhibited in Fig. 1.

Our POLICEd controller guarantees that all trajectories
entering B cannot cross its upper bound b and hence cannot
violate the constraint, whereas some baseline trajectories
cross b and violate the constraint as shown in Fig. 3.

B. Space Shuttle Landing

We now study the highly-nonlinear dynamics of the space
shuttle landing [28]. Original state x ∈ R3 is composed of

Horizontal Axis

Angle of AĴack α
Flight Path Angle γ

ShuĴle Velocity ν

Longitudinal Axis of the ShuĴle

Height  h  

Fig. 4: Illustration of our Space Shuttle environment. The state x ∈ R3 is
composed of the altitude or height h of the shuttle, its flight path angle γ,
and its velocity v. The control action is the angle of attack α.

the altitude h of the shuttle, its flight path angle γ, and its
velocity v, as seen in Fig. 4. The dynamics of these state are

ḣ(t) = v(t) sin γ(t) (23a)

γ̇(t) = ρ(t)v(t)CL(t)
S

2m
− g cos γ(t)

v(t)
(23b)

v̇(t) = −ρ(t)v2(t)CD(t)
S

2m
− g sin γ(t), (23c)

where the air density satisfies ρ(t) = ρ0e
−h(t)/H and the lift

and drag coefficients take the form

CL(t) = CL0
sin2α(t) cosα(t)

CD(t) = CD0
+KC2

L(t).
(24)

The other parameters are detailed in Table I. The control
input is the angle-of-attack α of the shuttle, which makes
these dynamics non-affine in control, and hence cannot be
handled directly by any CBF method2 [16], [17], [18].

In this scenario, the shuttle starts from a descent configura-
tion with high vertical velocity ḣ, which must be drastically
reduced to allow for a soft landing. More specifically, we
consider initial states typical of a descent phase from a height
h0 = 500 ft, velocities v0 ∈ [300, 400] ft/s and flight path
angles γ0 ∈ [−30◦,−10◦]. The objective of our controller is
to bring the shuttle to a low altitude h ≤ 50 ft with vertical
velocity ḣ ≤ 6 ft/s sufficiently small to allow for a soft
landing [28]. We choose an output constraint y := −h ≤ 0,
which has a relative degree 2 for control input α. We build
a buffer with ymin = −50 ft, ymax = 0 ft, smin

2 = 6 ft/s
and ẏmax = 100 ft/s.

We introduce state s :=
(
h, ḣ, γ

)
and invertible transfor-

mation T (x) = s is easily obtainable from pure geometric
considerations in Fig. 4 as it only needs (23a). Thus, As-
sumption 1 is verified and determining T does not violate
our black-box assumption on dynamics (23), (24).

We train two PPO policies [27] to minimize the vertical ve-
locity at touchdown. One of these policies is a standard MLP
used as a baseline and the other is our POLICEd version [15].
More implementation details are included in Appendix A. As
seen in Fig. 5 our POLICEd policy successfully enforces the

2Adding an integrator α̇(t) = u(t) renders dynamics (23) affine in
control at the price of a higher relative degree [29].



Fig. 5: Phase portrait of the space shuttle landing. POLICEd trajectories
(blue) entering buffer B (green) all converge to a set of target conditions
(pink) with small vertical velocity from which landing is feasible. However,
the baseline trajectories (dotted orange) reach the ground h = 0 with high
vertical velocities ḣ ≤ −6 ft/s resulting in a crash of the shuttle (x).

dissipative buffer of Theorem 1 and ensures soft landing of
the shuttle contrary to the baseline PPO policy.

V. CONCLUSION AND FUTURE WORK

In this work, we established High Relative Degree PO-
LICEd RL, a novel method to enforce a hard constraint of
high relative degree on learned policies, while only using
an implicit black-box model of the environment. We built
a buffer region where the policy dissipates the generalized
inertia of the high relative degree constraint to prevent
trajectories from reaching the constraint line. We illustrated
our theory on the MuJoCo inverted pendulum and on a space
shuttle landing scenario.

Several avenues for future work seem especially interest-
ing. Extending the POLICE algorithm of [20] to enforce
multiple affine regions would allow a straightforward ex-
tension of this work to guarantee the satisfaction of mul-
tiple constraints of high relative degree. Another interesting
pursuit would be to investigate how to guarantee constraint
satisfaction during the training process of the policy.

APPENDIX

A. Space Shuttle Implementation Details
The baseline and POLICEd policies are both modeled by

deep neural networks composed of 3 layers of 128 hidden
units. Their reward function penalizes changes in the control
input to encourage smooth variations of the angle of attack,
and penalizes the final altitude and vertical velocity of the
shuttle to promote soft landings. Its expression is

R(t) = −0.2
∣∣a(t)− a(t− dt)

∣∣− 1t=tf

(
|h(tf )|+ |ḣ(tf )|

)
,

where 1t=tf is the final time tf indicator function.

Remark 2. Choosing α as input might seem unrealistic since
α must be continuous. However, our control signal u(t) is
continuous by construction as a continuous function of the
state µθ(x(t)). Adding an integrator α̇(t) = u(t) as in [30]
could make a reasonable input choice but at the price of
increased complexity in calculating T−1 to recover α from
s.

TABLE I: Numerical values for the shuttle simulation from [28].

Parameter Name Value

S/m surface area over mass 0.9118 ft2/slug
CL0

zero-angle-of-attack lift coefficient 2.3

CD0
zero-lift drag coefficient 0.0975

K lift-induced drag coef. parameter 0.1819

ρ0 sea-level air density 0.0027 slugs/ft3

g Earth’s gravitational acceleration 32, 174 ft/s2

H scale height 27890 ft

B. Supporting Lemmata

Recall that Theorem 1 guarantees the respect of upper
bound b only while the trajectory remains in B. We can
thus strengthen Theorem 1 by deriving a lower bound b
sufficiently low for upper bound b(s) never to cross b and
cause a trajectory to prematurely exit buffer B. To put it
simply, we want b ≤ b(s) for all s ∈ B.

Lemma 4. Condition b ≤ b(s) for all s ∈ B is equivalent
to smin

2 ≤ 0, smin
2k+1 ≤ −β2k−1ẏmax and smin

2k+2 ≤ β2ksmin
2

for all k ∈ [[1, r/2]].

Proof. Let s ∈ B. Then, s2 ∈
[
smin
2 , β(ymax − s1)

]
.

smin
2 ≤ min

s
b2(s) = min

s
β(ymax − s1) = 0,

since s1 ≤ ymax. Hence, smin
2 ≤ 0. Similarly,

smin
3 ≤ min

s
b3(s) = min

s
− βs2 = −βmax

s
s2 = −βẏmax.

For k ∈ [[2, r − 2]], we have

smin
k+2 ≤ min

s
bk+2(s) = min

s
− βsk+1 = −βmax

s
sk+1

≤ −βmax
s

bk+1(s) = −βmax
s

− βsk = β2min
s

sk

≤ β2smin
k .

Applying this inequality recursively leads to smin
2k+1 ≤

−β2k−1smin
3 ≤ −β2k−1ẏmax and smin

2k+2 ≤ β2ksmin
2 for all

k ∈ [[1, r/2]].

Armed with Lemma 4, we can now calculate the minimal
number of vertices of buffer B, which corresponds to the case
where b = min

s
b(s). We first need to introduce the Fibonacci

sequence as Fn+2 = Fn+1 + Fn for all n ∈ N with F0 = 0
and F1 = 1 [31]. We recall that r is the relative degree of
output y of (2) with respect to dynamics (1). We denote the
cardinality of a set Z as

∣∣Z∣∣.
Lemma 5. If b = min

s
b(s), then the number of vertices of

B is Fr+2 ×
∣∣V(P)

∣∣.
Proof. We introduce Br :=

{
s1:r ∈ [b, b(s)] : s ∈ B

}
.

Then, buffer B of (9) can be written as the Cartesian product
B = Br × P . Since

∣∣V(P)
∣∣ denotes the number of vertices

of polytope P , we only need to show that the number of
vertices of Br is equal to Fr+2.

Following Lemma 4, b = min
s

b(s) yields, smin
2k = 0 and

smin
2k+1 = −β2k−1ẏmax for all k ∈ [[1, r/2]]. Since upper

bound bk(s) depends on the value of sk−1, to enumerate the



Fig. 6: Evolution of the altitude h, flight path angle γ and angle of attack α for three trajectories of the shuttle. All POLICEd trajectories reach level flight
γ = 0◦ at touchdown, which also appears as the flattening of the altitude plot at h = 0 ft, on the contrary to the baseline. The POLICEd controller also
learns to reduce the angle of attack α for landing, while the baseline remain at saturation.

vertices of Br we need to first list the possibilities for s1,
then for s2, and so on. At dimension k ∈ [[2, r]], we have sk ∈
[smin

k ,−βsk−1]. If sk−1 = smin
k−1, then sk ∈ [smin

k , smax
k ]. If

sk−1 = smax
k−1 , then smax

k = −βsk−1 = smin
k by assumption

b = mins b(s).
To enumerate the number of vertices of Br, we build a

tree listing all the possibilities where each level correspond
to a dimension as shown in Fig. 7.

smin
1

smin
2

smin
3

smin
4

smax
4

smax
3 smin

4 =smax
4

smax
2 smin

3 =smax
3

smin
4

smax
4

smax
1 smin

2 =smax
2

smin
3

smin
4

smax
4

smax
3 smin

4 =smax
4

Fig. 7: Tree of all the vertex combinations for Br . A node smin
k allows

sk+1 to take value in its whole range [smin
k+1 , s

max
k+1 ] and thus yields two

nodes smin
k+1 and smax

k+1 . However, a node smax
k causes bk = bk and thus

yields a single node smin
k+1 = smax

k+1 . Finally, a node smin
k = smax

k forces
sk = smin

k and thus sk+1 can use its whole range, which yields two nodes
smin
k+1 and smax

k+1 .

We count the nodes of the tree. At level k ∈ [[1, r]] we
define the number of nodes where sk = smin

k as nmin(k), the
number of nodes where sk = smax

k as nmax(k), the number
of nodes where sk = smin

k = smax
k as nnx(k), and the total

number of nodes as n(k) := nmin(k) + nmax(k) + nnx(k).
A node smin

k allows sk+1 to take value in its whole range
[smin

k+1, s
max
k+1 ] and thus yields two nodes smin

k+1 and smax
k+1 .

However, a node smax
k causes bk = bk and thus yields a

single node smin
k+1 = smax

k+1 . Finally, a node smin
k = smax

k

forces sk = smin
k and thus sk+1 can use its whole range,

which again yields two nodes smin
k+1 and smax

k+1 .
Thus, each node smin

k+1 = smax
k+1 is created by a node smax

k ,
so that nnx(k+1) = nmax(k). On the other hand, there is a
smin
k+1 and smax

k+1 node for each smin
k and each smin

k = smax
k

nodes, thus nmin(k+1) = nmax(k+1) = nmin(k)+nnx(k).

Then, for k ∈ [[3, r]], we have

n(k + 1) = nmin(k + 1) + nmax(k + 1) + nnx(k + 1)

= 2nmin(k) + nmax(k) + 2nnx(k)

= n(k) + nmin(k) + nnx(k)

= n(k) + nmin(k − 1) + nnx(k − 1) + nmax(k − 1)

= n(k) + n(k − 1).

Therefore, n verifies the recursion relation of the Fibonacci
sequence [31]. Additionally, Fig. 7 shows that n(1) = 2 =
F3 and n(2) = 3 = F4. Thus, n(k) = Fk+2.
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