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Abstract—Resilience of urban infrastructure to sudden,
system-wide, potentially catastrophic events is a critical need
across domains. The growing connectivity of infrastructure,
including its cyber-physical components which can be controlled
in real time, offers an attractive path towards rapid adaptation
to adverse events and adjustment of system objectives. However,
existing work in the field often offers piecemeal approaches
to particular scenarios. On the other hand, abstract work on
controlled complex systems focuses on attempting to adapt to
the changes in the system dynamics or environment, but without
understanding that the system may simply not be able to perform
its original task after an adverse event. To address this challenge,
this programmatic paper proposes a vision for a new paradigm of
infrastructure resilience. Such a framework treats infrastructure
across domains through a unified theory of controlled dynamical
systems, but remains cognizant of the lack of knowledge about the
system following a widespread adverse event and aims to identify
the system’s fundamental limits. As a result, it will enable the
infrastructure operator to assess and assure system performance
following an adverse event, even if the exact nature of the event is
not yet known. Motivated by ongoing work on some facets of the
broader problem of assured resilience, in this paper we identify
promising early results, challenges that motivate the development
of new theory, and possible paths forward for the proposed effort.

Index Terms—Smart infrastructure, resilience, uncertain sys-
tems, network systems

I. VISION AND PRIOR WORK

Resilience to catastrophic events is a crucial infrastructural
challenge, recognized across populations and government lev-
els [1]–[3]. Natural disasters, terrorist acts, and widespread
power failures all have the potential to rapidly deteriorate
the infrastructure’s capabilities to meet population needs, as
well as to change those needs. Inability to adapt to such
events in real time also impedes emergency services, evac-
uation, and supply chain operations. The need for resilience
— already amply displayed during natural disasters in past
decades [4]–[6] — is made stronger with growing reliance
on cyber-physical systems for control of infrastructure. For
instance, a team of security researchers recently demonstrated
the capability to influence traffic signals over the internet in at
least ten cities [7], potentially causing system-wide disorder
in the cities’ traffic flows.

While the natural approach is to use standard cyber-physical
safety and security measures to try to protect each network

component from failure [8], [9], perfect protection is impos-
sible in the face of the number of connected systems in a
smart city. Extreme natural events will inevitably degrade
the capabilities of a part of the overall infrastructure [10],
and — with increasing numbers of autonomous components
in interconnected transportation, electric, and telecommuni-
cations networks — cyberattacks will focus on identifying
network components vulnerable to hijacking [11]. On the
other hand, autonomous control over infrastructure offers
exceptional agility and adaptability, enabling rapid restoration
of satisfactory performance even in situations where physical
infrastructure is significantly degraded, e.g., by using traffic
signals to redirect traffic flow after damage to an area. A
natural goal — already identified throughout prior work in
the community [12], [13] — is, thus, to develop methods of
exploiting continued control authority over the system to drive
the system to perform as well as it can under the changed
circumstances.

While applied work on ensuring resilience in infrastruc-
ture often deals with specific scenarios [4], [12], ensuring
continued system performance in off-nominal situation is a
classical objective of substantial research in domain-agnostic
control theory and planning. Namely, the methods of robust
and adaptive control [14] have been previously applied to
smart city infrastructure [15], [16]. However, these methods
often suffer from several drawbacks:

• they are only able to guarantee adaptation to limited
disturbances — a bounded change in the system dynamics
or a change in a finite number of parameters,

• they assume specific mathematical structure of the system
— e.g., linearity — as well as of available knowledge
about the system after an adverse event,

• they aim to control the system to achieve the same level of
performance as prior to the adverse event, not recognizing
that the system may simply no longer be capable of doing
so using any control strategy.

These drawbacks are crucial when considering the problem
of resilience of infrastructure to sudden, potentially catas-
trophic, adverse events. Namely, events such as natural dis-
asters over a large area and hostile acts will fundamentally
change the system, substantially reduce the knowledge about



it immediately following the adverse event, and likely disable
the system from performing all its usual operations, prompting
a need to determine its new capabilities in real time.

Instead of classical robustness and adaptation methods, this
paper proposes a less brittle framework of resilience and
guaranteed performance, illustrated in Fig. 1. Its objective is
to answer the following questions:

1) Can we a priori guarantee system resilience, i.e., prove
that the system will be able to continue with its task
after an adverse event, even if the exact nature of the
event is not known in advance?

2) If so, how can the system continue with task completion
after such an event, even if the consequences of the event
are not entirely immediately known?

3) If not, what are the tasks that the system is certifiably
able to achieve, given the lack of knowledge about the
event’s consequences?

Fig. 1. A graphical representation of the proposed framework.

In subsequent sections, we describe our initial work on
this framework, investigate an illustrative scenario of shelter
assignment, and identify a plethora of research challenges to
be surmounted before such a paradigm can be widely applied
and adapted to smart city infrastructure.

II. RESILIENCE AND GUARANTEED PERFORMANCE

Any infrastructure system is naturally a combination of
static and dynamic components [17], [18]. The former consist
of physical objects and are nominally — barring significant
adverse events — fixed, at least over short time scales.
The latter consist of time-varying functions of system users,
environmental conditions, and protocols for control over the
system. To take an example of a transportation network, the
static components are the roads, speed limit signs, and posi-
tions of traffic signals. The dynamic features are the number
of cars at every intersection at any given time, precipitation,
and the traffic signal lights at a given time.

If x denotes all elements relevant to the system’s mission
success (i.e., system state), ordinary differential equation

ẋ(t) =
dx(t)

dt
= f(x(t), u(t), t), (1)

provides a widely used way to describe the change in those
features over time [13], [15]. It states that this change is

described by dynamics f which depend on the system state
itself, the control authority u that can be used to influence the
system, and time, and can be naturally appended by stochastic
components or time-delay.

An adverse event will cause dynamics (1) to change to

ẋ(t) = f̄(x(t), v(t), w(t), t), (2)

with inputs (v, w) which model the possible loss of control
authority over some of the actuators. Namely, v describes
inputs that are still under the controller’s authority, while w
describes inputs over which the controller has no authority.
Function f̄ models the new system dynamics, which may be
partially unknown to the controller.

To assess the system’s capability to respond to adverse
events, we are interested in pursuing two broad problems.

Problem 1 (Resilience): Given the control system described
by (1), a priori determine whether it will be able to complete
a task following an adverse event, without knowing the event’s
exact nature and behavior.

If the system is not resilient, we want to understand its
fundamental capabilities.

Problem 2 (Guaranteed Performance): Determine in real
time the set of tasks that a control system is guaranteed to be
able to complete after an unexpected event, given incomplete
knowledge of (2) at the time of the event.

Naturally, we also want to generate an appropriate control
signal immediately after an adverse event, enabling the system
to complete the chosen task, as well as determine conditions
for a system to be resilient regardless of the exact nature of
its task, enabling resilient system design.

While problems of resilience and guaranteed performance
can be posed mathematically rigorously, they are challenging
even for simple control systems. Yet, initial work [19]–
[23] in domains different from infrastructure — and under
often-restrictive technical assumptions — yielded preliminary
success by using methods of geometric and optimal control
theory. We now introduce the first foray of this theory into
infrastructure planning.

III. ILLUSTRATIVE APPLICATION: SHELTER ASSIGNMENT

Consider a scenario — investigated in detail in [24] —
where, due to a natural disaster or hostile action, urban
population needs to evacuate to one of several community
shelters. For this illustration, the shelters are in a central
location and, except for a small fraction of the population that
moves to each shelter directly, the majority of the population
first approaches one of several checkpoints where they are
directed to an appropriate shelter.

We assume that the population arrives to checkpoints and
shelters at a steady pace, and that the population assigned to
the shelter is immediately counted among that shelter’s popula-
tion. Assuming that there are N shelters and K checkpoints,
and denoting the population count of shelter i at time t by
xi(t), system dynamics are given by

ẋi(t) = α0i +

K∑
j=1

αjuji(t), (3)



where uji(t) is the fraction of the population at checkpoint
j that gets directed to shelter i at time t, and αj is the
rate of arrival at checkpoint j. Naturally, uji(t) ∈ [0, 1] with∑N

i=1 uji(t) = 1 for all j.
The objective is to fill each shelter to its capacity Ci; the

task fails if an individual is assigned to an overpopulated shel-
ter without filling all shelters first. Given that xi is increasing
for all i, this goal is one of reachability: ensuring that there
exists time T such that x(T ) = (C1, . . . , CN ).

Determining an appropriate control policy for (3) is trivial.
However, as a consequence of the adverse event, one of the
checkpoints is not functioning as planned: its decisions are
not coordinated with other checkpoints, are likely not optimal,
may change over time, and may even be adversarial to the
system’s objective. We wish to determine whether the task
can be completed regardless of what happens at the “rogue”
checkpoint.

To illustrate the method of resilience verification, we con-
sider a scenario with N = 2 and K = 3, shown in Fig. 2.

Fig. 2. An instance of the shelter assignment problem. Blue checkpoints are
under central authority and their shelter assignments are controlled. Orange
checkpoint is not controlled and is potentially adversarial. Green arrows
indicate the arrival of population to checkpoints, as well as directly to one of
the shelters. The rate of these arrivals is known and cannot be controlled.

We assume that shelters have the same capacity C1 = C2 =
500 and the checkpoints have the same arrival rates αj = 1.
Additionally, one of the shelters also receives a part of the
population directly: α01 = 0, α02 = 1. Recalling that uj2 =
1− uj1 for all j, the system dynamics are thus

ẋ(t) =

(
0
4

)
+

(
1 1 1
−1 −1 −1

)u11

u21

u31

 . (4)

We assume that the third checkpoint is malfunctioning. By
introducing a “dummy state” x3 with ẋ3 = 0 and taking v1 =
2u11−1, v2 = 2u21−1 and w = 2u31−1, dynamics (4) take
a linear form

ẋ = Ax+B1v +B2w (5)

=

0 0 1.5
0 0 2.5
0 0 0

x+

 0.5 0.5
−0.5 −0.5
0 0

 v +

 0.5
−0.5
0

w,

with x(0) = (0, 0, 1) and v1, v2, w ∈ [−1, 1]. Now comes
the technical key to the solution, used more generally in [21].
Following [25], subspace E = {α(xe1, xe2, xe3) | α ∈ R} is
reachable from x(0) with dynamics (5) for any input signal
w if and only if E is reachable from x(0) with dynamics
ẋ = Ax + z, where control input z ∈ Z = B1[−1, 1]2 ∩
(B1[−1, 1]2 ⊖ B2[−1, 1]), with BY = {By | y ∈ Y} and
symbol ⊖ denotes the Pontryagin difference [26].

Omitting further arduous computations, we obtain Z =
{α(1,−1) | |α| ≤ 1/2} regardless of E . Hence, (C1, C2) is
reachable for any adversarial input w in (5) if it is reachable
by ẋ1 = 1.5+z, ẋ2 = 2.5−z for |z| ≤ 1/2. The reachable set
of this dynamical system is simple to analyze: both shelters
can be filled exactly to capacity as long as C1 ≤ C2 ≤ 3C1. In
this case, methods of [25] and [21] thus show that the system
is resilient to loss of authority over one of the checkpoints.

Similar work for K = 2 shows that an analogous system is
not resilient: no control law can “fix” the malfunction in one
of the checkpoints and an alternative task must be chosen. This
analysis thus provides the system designer with guidance on
the system’s fundamental limits: if there is a chance that one of
the checkpoints will not be functioning as planned and shelter
capacities are fixed, there need to be at least three checkpoints.

IV. CHALLENGES

Notwithstanding a simple example like above, existing work
[19]–[23] still faces a plethora of challenges in order to be
applicable to system-wide response to disastrous events. We
outline several of them.

Faithful Modeling of System Structure and Disaster Effects

The illustrative example in Sec. III only dealt with a
malfunctioning — and possibly adversarial — decision-maker.
However, the fundamental dynamics of the system remained
the same. Yet, in a variety of disaster recovery scenarios, the
adverse event causes a substantial change in the dynamics of
the system, and also renders them not immediately known.
Prior work on theory of guaranteed reachability [22], [23]
considers several models of partial knowledge of the dynamics.
However, these models — largely reliant on rapid learning
of local dynamics combined with bounds on the growth
and magnitude of the dynamics — are not amenable to the
partial knowledge patterns and comparatively long time scales
relevant to infrastructure problems.

One possible path forward is to decompose the system dy-
namics into known and unknown parts [27], then identifying,
as in [21], the worst-case possible unknown dynamics, and
obtaining guarantees on system performance and resilience by
observing the best possible response to the worst case.

Scalability and Network Control

While the example of Section III is limited in the number
and interaction of both states and control inputs, a large-
scale infrastructure network — or amalgamation of multiple
interdependent networks — may consist of thousands of inter-
acting states and inputs. Taking an example of a transportation



network with traffic signals as inputs, the city of Chicago
operates around three thousand signalized intersections [28].

Existing results [19]–[23] have only been applied to systems
of up to a dozen states and inputs. The computational complex-
ity of resilience and guaranteed performance verification, as
well as appropriate control design, remains largely unexplored.
As prior results often describe resilience through conditions
on eigenvalues and singular values of matrices derived from
system data, it is likely that numerical approximation methods
are needed to provide such results at scale.

In addition to scalability challenges, infrastructure systems
spread over a wide area naturally suffer from delays in obser-
vations and implementation of reactive control laws, as well
as partial observability of the system state [12]. A possible
way forward is to relate the resilience of an entire system
with resilience of its tightly coupled subsystems. Doing so
would enable less burdensome resilience certification, as well
as simple derivation of distributed control inputs.

Complex and Time-Critical Tasks
Disaster response often carries a time imperative or involves

a sequence of subtasks that should be completed. It is thus not
only necessary to determine whether a system is resilient, but
“how” resilient it is. To quantify this notion for time-critical
missions, previous work [19] introduced the notion of quan-
titative resilience as the ratio of the times required to reach
any target for the initial and malfunctioning systems. Such
work provides a possible initial step towards more general
quantification of fundamental system capabilities. However,
in addition to suffering from all the drawbacks and challenges
described previously, the theory of quantitative resilience has
thus far only been introduced for systems with malfunctioning
inputs, and does not consider tasks more complex than simple
reachability. Developing metrics and algorithms for quantita-
tive resilience applicable to a wider class of changes in the
system dynamics and possible tasks is crucial for infrastructure
applications.

V. CONCLUSION

This paper proposes a vision for the development of theory
and algorithms that verify resilience and fundamental capabili-
ties of large-scale infrastructure systems in response to sudden,
possibly disastrous events. The envisioned effort is founded
on initial work on resilience and guaranteed reachability in
partially known or malfunctioning control systems. However,
significant challenges remain in attempting to apply existing
work: issues of scalability, partial observability, distributed
control and complex system interdependencies all pose crucial
theoretical, algorithmic, and computational questions. Yet, the
potential reward is immense, promising provable resilience
and verifiably correct system-level response to disasters, with
the same fundamental theory operating across domains.
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