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ABSTRACT

This thesis examines an orbit control problem for a spacecraft around a contact binary asteroid

considering the dynamics of both the spacecraft and the asteroid itself. It is known that approximately

15% of the near-Earth asteroids are binary, and among these the fraction of contact binaries is

between 6 and 10% [1]. Most contact binary asteroids are constituted of an agglomeration of smaller

boulders maintained together due to their internal gravity, which is a relatively unstable configuration.

Therefore, even a minor change in their mass distribution, like would be caused by the landing of

mining machines, can result in a modification of the asteroid’s structure including a landslide or

a splitting. Particularly, separation of the asteroid into two parts is problematic in terms of orbit

control, because of the consequences on the gravitational field of the asteroid. Traditional two-body

orbital control methods cannot be applied to the missions to those asteroids because they do not

consider the dynamic activities of the asteroids themselves. This thesis proposes and evaluates a

control method to follow a predefined path under unknown states of the splitting binary asteroid.
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1. Introduction

Recent emphasis on space explorations of asteroids has arisen in the last decades. Such explorations include

collecting asteroid materials for multiple purposes that widely range from scientific studies to engineering

advances. Hayabusa, an asteroid sample return mission led by Japan Aerospace Exploration Agency (JAXA), explored

Itokawa, an asteroid orbiting close to the Earth, or a so-called Near-Earth Asteroid (NEA), and brought a sample of its

surface material back to the Earth [3]. As of November 2018, JAXA-led Hayabusa2 [4] and NASA-led OSIRIS-REx

[5, 6] are currently attempting to sample such material from target asteroids (162183) Ryugu and (101955) Bennu,

respectively, with different technologies. The Hayabusa2 mission plans to land on Ryugu’s surface, ignite a high-speed

projectile to surface rocks, and collect fragmented materials inside a sampling system, called the sampler horn [4]. On

the other hand, the OSIRIS-REx mission attempt to expel a jet of gas to capture surface rocks [6]. In addition, as a

NASA/New Frontiers-level mission, CAESAR, one of two selected NASA/New Frontiers-level missions, is proposed to

explore and return a sample of 67P/Churyumov-Gerasimenko, a comet whose orbit is mostly controlled by Jupiter, i.e. a

Jupiter Family Comet [7].

These asteroid exploration missions have shown potential expansion of our capabilities for proximity operations to

the surface of asteroids. Complex operations in concepts and ongoing missions include direct interactions of spacecrafts

with surface materials [8] or the structure of asteroids due to explosion [9]. Also, collecting a large amount of materials

from asteroid surfaces, or so-called asteroid mining [10], or deflecting potential hazardous asteroids by using kinetic

impactors are part of applications and utilization of asteroids that require sophisticated technologies. NASA Double

Asteroid Redirect Test (DART) is an ongoing mission, which is in Phase C, as of November 2018 [11]. In this mission,

the DART spacecraft is designed to impact on a smaller secondary component of (65803) Didymos, a binary NEA but

is also planned to release a Cube-Sat before the impact.

Such advanced proximity operations may change the gravitational configuration of a target asteroid. There are two

reasons to address this issue. First, many small asteroids may be gravitational aggregates of small boulders, rocks,

and regoliths, or so-called rubble piles as inferred from the spin conditions of observed asteroids [12] and from the

derived bulk density and surface morphology of Itokawa [3] . Such asteroids do not have mechanical strengths [13, 14],

implying that they might occasionally experience local and global landslides and internal deformation processes. These

processes have been proposed to result from fast rotation and tidal effects. The second reason is that asteroids are

irregularly shaped. Typically, their various shapes are categorized into four critical shapes: spheroidal, elongated,
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contact binary, and non-classified shapes. Importantly, the shape is a critical parameter of the rotationally induced

deformation mode [15].

Earlier work showed that when the shape of an asteroid changes, the gravity field of that asteroid also changes,

leading to additional perturbation of the orbital motion. [16] demonstrated how the mutual motion of Didymos could

change due to the shape deformation of the primary body. The latter may significantly control the magnitude of the

centrifugal force, depending on the bulk density of this asteroid. They considered that at this fast rotation condition,

if the primary body receives a kinetic energy input (from an impact), the current shape configuration would become

unstable and settle into a new one. They identified that such a process significantly changes the gravity field, causing

orbital perturbation.

We cast the following questions. How does the orbital motion of a spacecraft change when the asteroid is structurally

deformed during proximity operations? And, how robustly should control and navigation systems work to guide the

spacecraft securely? This scenario may be likely to happen as proximity operations to asteroids become more complex.

As mentioned above, some asteroids have fast rotation rate, which cause higher sensitivity to structural deformation

as centrifugal forces become dominant. In this case, shape deformation may occur due to small inputs that trigger

large deformation. Also, when a spacecraft conducts impact operations, the crater formation processes cause critical

deformation processes including compression beneath the surface and the formation of circular depression.

In this works, we consider an hypothetical situation in which our spacecraft is performing proximity operations near

a contact binary asteroid – an asteroid that consists of two lobes connecting with each other – that gradually deforms.

Ground observations have shown that a contact binary configuration is common in the Solar System, in fact 15% of

observed asteroids may have some features of contact binaries [1, 17] . For instance 1996 HW1 [18], Itokawa [3],

(Figure 1) Castalia [19], and Toutatis [20] in near earth asteroids (NEAs) and Kleopatra [21] in the main belt asteroids

(MBAs) are contact binary asteroids. For cometary nuclei, observations have revealed that about 70% of the observed

objects at high resolution may be contact binaries. The nucleus of 67P/Churyumov-Gerasimenko is one of comets

having a contact binary nucleus. A potential formation scenario of this object include a catastrophic disruption followed

by a soft contact of two lobes and recontact after splitting of two lobes. If a contact binary asteroid reaches its critical

limit of a structural condition, the neck part experiences inelastic deformation, causing the body to stretches along the

minimum moment of inertia axis gradually [14]. To consider this condition, we introduce a simple model in which a

contact binary is assumed to be a system that has two spherical bodies connecting with each other.

We demonstrate a control and navigation technique for robustly achieving a desired trajectory. We made some

assumptions to implement our orbital control technique. First, the spacecraft possesses sensors to measure its relative

distance and velocity with respect to a considered contact binary asteroid. We propose a navigation technique where

the spacecraft estimates the asteroids’ mass ratio, and total inertia during operation, given measurement noise. To

implement this method, we apply an Extended Kalman Filter (EKF)[22, 23]. A path following algorithm developed by
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[24] is used to keep the spacecraft on the desired orbit. Thus, our main system includes a plant, a controller, and an

estimator. This organization is based on Adaptive Control [25–27].

(a)

(b)

Fig. 1 Examples of contact binary asteroids. a. 1996 HW1 [18], and b. Castalia [19]. The contour shows the
slope angle, which is an angle between the force direction (gravitational plus centrifugal forces) and an inward

vector normal to the surface.

3



2. Literature Review

Our work is at the crossover of several different domains among which are orbital mechanics, adaptive control and

asteroid modeling. An extensive literature covers all these topics but no paper (to the best of our knowledge) tackles

them all at once. This is the objective of our thesis: to bring these topics together through the study of a trajectory

control problem around a splitting asteroid.

2.1. Asteroids

2.1.1. Asteroid model

Several asteroid models have been developed in the literature, ranging from the simplest one that considers just a

point-mass, to a very complex model with polyhedral representation. Werner and Scheeres [28] compares three types of

high fidelity gravitation models: the Harmonic expansion of the gravity potential field, the Mascon model, and the

Polyhedron representation. The Harmonic series have a guaranteed convergence. Their precision can be controlled

easily by truncation and the literature available on this topic is abundant. Yet, this method has three main drawbacks: it

is never exact, always an approximation of the actual field; the series can diverge inside the circumscribing sphere of the

asteroid, which is a problem for the close surface gravity of non-spherical bodies; and the model does not provide a

way to know the spatial position of the surface of the asteroid, so another algorithm must be implemented to know if a

point is inside or outside the asteroid. Mascon is the abbreviation of mass concentration. This term is used because the

method models the body as a collection of point masses whose locations and masses are chosen to match the total mass

of the asteroid and approximate the overall gravitation field. Like the Harmonic procedure, it does not carry information

about the surface position, and is usually less accurate for the same calculation time. In the Mascon model, the gravity

field does not diverge, but the convergence to the actual gravitation field with the increase of the distance to the asteroid

is slower than for Harmonics. A polyhedron is a solid 3D body which is constituted of planar faces meeting at straight

edges or points. It can be non-convex, with interior voids, holes, etc. It is assumed to have a constant density. This

model is proven better than the two previous ones, since the error is reduced to a shape determination process, the

gravity field does not diverge and it brings along an easy way to acquire the spatial position of the surface. However the

computations are more time expensive. Our work does not yet require such a precision, and thus a much simpler model

has been adopted.

The asteroids’ model considered in this thesis is composed of two spheres rotating around each other and linked with

a massless rod. Since the spheres are homogeneous and the spacecraft does not perform any close surface operation,

the point-mass model can be adopted for each asteroid. This model has also been employed by M. Hirabayashi [15],

which studies the stability of the Lagrange points (explanations in section 3.3) in the case of a contact binary asteroid
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submitted to a centripetal force stronger than the gravitational one. The two interesting Lagrange points L2 and L3 for

orbit purposes remain unstable, and thus we should still be able to compute the usual Halo orbits around those points.

We will tackle this topic later, in section 3.3.

2.1.2. Orbital Mechanics applied to Asteroids

Orbiting around a small body like an asteroid is a challenging task due to the sharp variations of gravity caused

by its irregular shape. [29] highlighted this sensitivity by computing several orbits with close initial conditions, but

very different endings: impact, escape or stability. The solar attraction and radiation pressure are also two sources of

instability that must be accounted for. The study is then divided into two regimes: Gravity Regime, when the asteroid

provides the main perturbation; and the Solar Dominated Regime. In that first scenario, depending if the asteroid rotates

uniformly or tumbles, equilibrium points and periodic orbits are respectively dense or discrete. An accurate model of

the asteroid and of its gravitation potential is required for the computations of these close orbits. In the second scenario,

a criteria is derived to check if the spacecraft will escape its periodic orbit due to the action of the Sun. And eventually

the study of the spacecraft Rosetta orbiting the comet 67P/Churyumov-Gerasimenko, gather this two scenarios into one

real test case. The closer the orbit is to the comet, the more unstable it is, because of the variation of the gravitation field,

but for further away orbits, the action of the Sun becomes the main source of destabilization. They finally determined

Terminator orbits that remain indefinitely stable, and are thus a good choice for the mission.

To study a binary asteroid, the 2 Body Problem (2BP) frame is a good first step. Yet the point mass assumption is

not valid anymore when considering non-spherical bodies, close operations, or the rotation of the asteroids. Therefore

the 2BP has been extended by taking into account the mass distribution of the primaries to become the Full 2 Body

Problem (F2BP). A simplified version of the F2BP is studied by Bellerose and Scheeres [30] by restricting the bodies

shape to a spheroid and an ellipsoid. This work goes further in term of stability study than Scheeres [31], and also

investigates the various periodic orbits of one body around the other along with their stability. Depending on the

mass ratio ν = msphere

msphere+mellipse
, there is one or two equilibrium positions. When the ellipsoid dominates there is one

equilibrium, and when increasing the mass ratio, i.e. going towards a sphere dominated system, it bifurcates into two

equilibrium : one stable, and one unstable. Orbits around those equilibrium points can be computed using eigenvectors

perturbation and Poincarré maps. More details about orbit calculations can be found in section 4.1.2.

Once this F2BP is totally explored, one can move further, and tackle the motion of a spacecraft in the surroundings

of two asteroids. Its trajectory can then be calculated in the frame of the Restricted Full 3 Body Problem (RF3BP). It is

called Restricted because this case has the primary assumption that the third body (the spacecraft) has a negligible mass

compared to the asteroids’. Therefore, the first two bodies are not affected by the spacecraft’s position and follow the

F2BP. In Bellerose and Scheeres [32] a periodic motion of the primaries is chosen as solution of the F2BP, and several

orbits of the spacecraft in that environment are studied. Their stability is heavily impacted by the choice of the F2BP
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motion.

2.1.3. Asteroid Missions

The objective of this thesis is to provide some useful knowledge for an asteroid mission design dealing with risks of

splitting. Several asteroid missions have already been successfully launched by different space agencies. We will review

the OSIRIS-REx and Hayabusa missions, respectively led by NASA and JAXA.

The main goal of the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer

(OSIRIS-REx) asteroid mission is to return a sample from the asteroid (101955) Bennu. This mission will improve

our knowledge about asteroids, and more specifically about the chemical, thermal, and mineralogical properties of the

regolith. Lauretta et al. [5] study the properties of Bennu, while Lauretta et al. [6] proposes a mission overview with

detailed lists of objectives and system engineering processes. Asteroids are composed of leftover materials from the

Solar System formation that didn’t aggregate to form a planet, and thus stayed intact since that time. Indeed, the rocks

composing a planet have been considerably altered because of numerous impacts, they melted with each other to form

new rocks, and the atmosphere can also totally modify them. Having access to such old materials can help understand

the initial conditions on Earth that led to the apparition of life. The visited asteroid is of a completely different kind

compared to the target of the previous asteroid missions, in terms of shape and albedo. The orbit of Bennu is known

with one of the best accuracy and approach the Earth every 6 years. A high fidelity trajectory model has been established

by taking into account all planets and even more than a dozen of other asteroids able to perturb the orbit of Bennu. The

YORP effect has also been accounted for in the model. All the information concerning Bennu are the result of a long

astronomical campaign of observations. A study of the surroundings of Bennu has also been led, in order to assess the

presence of undetected small asteroids or dust orbiting Bennu. With the detailed knowledge acquired, the authors were

able to produce a time-line of the events resulting in the asteroid as we can observe it now. But they were also capable to

predict its trajectory for the next two centuries, until the point were the probability of impact with the Earth becomes

too high. The mission is divided into several phases : launch, outbound cruise, approach, rendezvous trajectory, orbit

around the asteroid for several months in order to totally map its surface and select candidate sampling sites. Then, once

one has finally been approved, the touch-and-go operations will be rehearsed several times before performing all five of

them to recover samples. The mission will enable a close study of the YORP effect and bring more details about how to

account for it. Indeed, it is the main mechanism that drives small asteroids out of their orbit in the main asteroid belt,

until possibly intersecting Earth’s orbit. From a mission design point of view, several parameters of the asteroid were

crucial in the target selection process, namely the orbit, mass, shape, rotation, gravity, temperature,... Indeed, only NEA

were considered due to delta-V capabilities of the sample return spacecraft. And even among those, the propellant cost

of the round-trip trajectory brought selective constraints. Then small asteroids have been rejected because rotating too

fast. If all the feasibility and safety criteria are verified, then the scientific value of the remaining candidates is the final
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selection judge. The spacecraft overview can help giving realistic values to our simulations. Touch-and-Go Sample

Acquisition Mechanism, or TAGSAM will collect materials by releasing a jet of N2 gas on the surface and then capture

the floating particles blown from the surface. The flight control of the spacecraft is crucial for that kind of maneuver

and must be of high precision. However, working in a micro-gravity environment dangerously increases the impact of

every little uncertainty in the thrust control. The OSIRIS-REx mission will test all the asteroids rendezvous procedures,

the specific sampling method, validate the asteroid’s model built from ground observations. Overall it should benefit all

the future NEA approach missions by bringing more knowledge about their formation and concerning the YORP effect.

The Japan Aerospace Exploration Agency has already successfully accomplished an asteroid sample return mission

named Hayabusa on the S-type asteroid Itokawa, and is currently implementing Hayabusa2 on another near-Earth

asteroid but of a more rare carbonaceous-type (C-type) called Ryugu.

Fujiwara et al. [3] describe the asteroid Itokawa with the data collected by Hayabusa. Similarly to the OSIRIS-REx

mission, the target asteroid has been selected because easily reachable due to a small inclination and an orbit crossing

the Earth orbit. After some time spent into orbit for mapping and topographic purposes a touch-down site has been

selected in the Muses Sea. The sampling method is the main difference with the OSIRIS-REx mission. In this case, the

spacecraft lands and stays half an hour on the asteroid surface, before going back on orbit. When on the ground, surface

materials were supposed to be captured by the horn system. Yet it failed, only floating dust has been collected. But

these few particles were still a high valued asset, and enabled sufficient analysis to consider the mission as a success.

Several mechanical failures prevented to reach the desired precision in the mass determination of Itokawa and delayed

the samples return. Several hypothesis try to explain the presence of small particles of regolith on the surface of Itokawa

even if they should be at their escape velocity. Based on the slope and the distribution of the boulder sizes at the surface

several tentative explanations of the past and the internal structure of the asteroid.

Tsuchiyama et al. [33] analyze the regolith samples returned by Hayabusa. The particles have been compared with

the Moon samples, and also with meteorite rocks. They deduced that chondrites, the most common meteorite rocks

found on Earth come from S-type asteroids like Itokawa, which are also the most common NEO. From the shape and

size distribution of the samples, a tentative history of Itokawa has been selected. A parent asteroid has been impacted,

blowing away rocks from its surface. Those had close trajectories because of a common ejection, and have collided and

agglomerated forming the rubble-pilesItokawa as we know it.

Watanabe et al. [4] provide a mission overview of Hayabusa2. The target asteroid, Ryugu is of the C-type, which is

the category expected to date back from the beginning of the Solar System, and composed of a mixture of minerals, ice,

and organic matter. The spacecraft is carrying three small rovers and a lander. The latter can hop on the asteroid’s

surface to visit several zones of the asteroid. Indeed, the spacecraft will only perform touch-and-go maneuvers, and so

will not stay long enough on the surface to perform close science analysis. The sampling method is different than the

two previous ones. When the spacecraft will reach the surface, a small projectile will be expelled at a speed of 300m/s
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to pulverize the surface of Ryugu, and the floating particles will be captured by the sampling horn. This operation

will be repeated at three different locations on the asteroid. To get access to underground materials, an artificial crater

will be formed by a copper impactor. It will be detached from the spacecraft, and collide only when the craft is safely

positioned on the other side of Ryugu. The crater is expected to have a diameter of up to 10 meters. When the dust and

projectiles created by the impact will be cleared out, the spacecraft can perform its last sampling maneuver in the crater.

The scientific goal of the mission is to understand the origin of water and organic matter on the Earth, by studying the

distribution and the characteristics of the materials composing Ryugu.

The sampling processes implemented during the three asteroid missions presented, will most likely be light enough

not to jeopardize the asteroid’s unstable structure. Therefore, the case of the splitting of the asteroids has never been

mentioned or studied, but can become crucial when studying smaller asteroids or heavier surface operations like mining.

2.1.4. Characteristics of Binary Asteroids

Before considering the splitting of a binary asteroid, it is wise to learn about its formation. The contact binaries

usually result from the collision of two bodies orbiting each other. [34] describes how a single asteroid can become such

a non-contact binary system. In that work, an asteroid is modeled by a collection of small spheres in contact, because

most asteroids are rubble piles. Then the YORP (Yarkovsky–O’Keefe–Radzievskii–Paddack) effect is applied to the

model : it consists in a slow spin-up of an asteroid due to the photons flux from the Sun. When its rotating velocity

becomes sufficiently high, the spheres composing the model move from the poles to the equator where they have a faster

velocity, and can thus be ejected. Depending on the shape of the asteroid, and on the coefficients of the collision model

between two spheres, the ejecta staying on orbit can gather and form a second body orbiting the initial asteroid. By this

process a single asteroid becomes a pair of two rotating asteroids. By the continuous increase of rotating velocity and

the perturbing tidal forces due to encounters with planets, these two asteroids can collapse back together and form a

contact binary asteroid.

Several mechanisms perturb the angular momentum of asteroids. These include the YORP effect, but also direct

impacts and the tidal effect due to planetary flybys. On average they tend to increase the rotating velocity. These

mechanisms are all capable of splitting a single asteroid into two bodies as we have seen previously, and also of

dividing a contact binary asteroid. This last scenario has been studied by Scheeres [31], and more specifically the case

of a spheroidal asteroid interacting with an ellipsoid one. Both of these bodies tend to evolve towards their overall

minimum-energy configuration, which can either be one asteroid resting on the other along one of its principal axes of

inertia, or the two bodies rotating around each other at a specific angular velocity.

The fission limit is the minimal rotating velocity required to lose contact between the primaries and transit from a

resting equilibrium to an orbital one. The mass distribution of the asteroids and their shape have a considerable impact

on their fission limit. The typical value of this limit corresponds to a period of 2.2 hours, which is faster than almost all

8



binary asteroids in the Near Earth Objects (NEO) population. However, when considering an ellipsoid and spheroid

system, instead of a double spheroids system, the fission limit can be considerably lowered. Indeed, if the ellipsoid is

bigger than the spheroid, then the fission limit period can increase to around 6 hours. This case is more common among

the NEO, which means that a larger number of asteroids could be at their fission limit. Thus the splitting of binary

asteroids is more probable than expected for the slow rotating NEO, and learning how to deal with this case motivates

this thesis. Several scenarios of lifetime evolution of asteroids are studied by Scheeres [31] based on the mass ratio. If

the ellipsoid is largely dominant, then the fission is likely to happen and the system can also have a positive free-energy,

meaning that the bodies can escape each others’ attraction. For an ellipsoid a bit less dominant (like Itokawa [3]) the

free-energy would be negative, and since the orbital equilibrium positions are mostly unstable, the asteroids could

re-impact. But the most common case pictures a dominant spheroidal primary, or two spheroidal bodies which have

stable equilibrium and a faster fission limit.

2.2. Adaptive Control

2.2.1. Theory of Adaptive Control

The environment of the spacecraft is constantly evolving and only accessible through imperfect measurements. To

model these uncertainties and account for unknown parameters (such as the asteroids masses, inertia,...), an adaptive

control organization is necessary [26]. Adaptive control is usually divided into two broad categories : direct and indirect

control. The latter category is the more natural process since it estimates the unknown parameters of the system, before

using them in the control law. Direct methods combine these two steps by calculating directly the control gains; the plant

parameters are not estimated. Even if these two approaches are philosophically different, they can be equivalent in some

cases [35]. A good introduction to the adaptive control theory would be Lavretsky [25], because the amateur has first to

go through all the Lyapunov stability theory. Indeed, to prove the stability of a controller the most widely used method

is to define an appropriate candidate Lyapunov function V(x), positive definite, with continuous partial derivatives and

whose time derivative along any state trajectory x(t) is negative semi-definite. After proving all the necessary theorems,

one can use this method and actually build an adaptive controller along one of the two usual scheme : the Model

Reference Adaptive Controller (MRAC) and the Self Tuning Controller (STC). They can both be direct or indirect.

r
controller

reference model
ym

u plant y +- e

adaptation lawθ̂

(a) MRAC

r
controller u plant

y

estimatorθ̂

(b) STC

Fig. 2 The two different adaptive controllers
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The overall goal of those controllers is to have the output y(t) following a reference input r(t). Some adaptive

control law can achieve it, even with several estimated parameters not converging to their true value. Thus, having

the estimation error going to zero can be seen as a secondary goal, but its accomplishment will facilitate reaching the

overall goal. So let us work on the Indirect method, since it estimates the parameters of the system to compute the best

control law. Estimator and controller are two different blocks, as can be seen in fig. 2b, therefore the controller assumes

that its inputs are the true parameters, and not their estimates. This is the Certainty Equivalence Principle (CEP). To

ensure the convergence of the estimated parameters to their true values, a condition on the input signal ν is required: the

Persistency of Excitation (PE). ν is PE if and only if ∃ α > 0 / ∀t > 0, ∃ T > 0 /
∫ t+T

t
ν(τ)ν(τ)T dτ > αIN . The math

linking convergence and PE are developed in Boyd and Sastry [36] and rely on Harmonic Analysis. Their conclusion is

that the spectrum of the reference input r must contain at least N frequencies in order to ensure the convergence of N

estimated parameters.

Therefore a control strategy relying on the CEP needs a control signal persistently excited. However, in practice the

PE conditions are difficult to meet. Thus, more contemporary papers have focused on relaxing these PE conditions. The

idea behind the PE conditions is that the input must be rich enough, carry sufficient information to allow the estimator to

work properly. One can draw a parallel with the need of N independent equations in order to determine N unknowns. A

PE signal carries at all time enough information. But, if the system can store data, then after some time, a signal less

rich can also have brought a sufficient amount of information. This is the idea more formally developed by Chowdhary

and Johnson [37].

2.2.2. Spacecraft Adaptive Control

The literature tackling Adaptive Control for spacecrafts mainly focuses at estimating and controlling the craft’s

attitude, i.e. its orientation with respect to an inertial reference frame. Usually the moments of inertia of the spacecraft

are known with some uncertainties, and the adaptive control law derived from a feedback linearization of the equations

of motion (EOM), will try to overcome those uncertainties to successfully complete the mission.

J. Junkins and Robinett [38] consider a spacecraft with unknown inertia trying to perform a maneuver. After

establishing the EOM and making use of the adapted attitude representation, an adaptive feedback controller is calculated.

The process follows the classical steps :

• Taking the difference between the actual and reference EOM, to obtain the perturbation equation

• Inverting this equation to access the control input u

• Choosing u while building V a candidate Lyapunov function in order to prove the stability of the controller

• Computing the estimates of a few gains

This paper employs a Direct Adaptive Control method by estimating directly control gains. Since the PE conditions

are not assumed to be verified, the estimates are not assured to converged to their true value, but the controller is still
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working because not relying on the CEP.

In that same framework, S. Bandyopadhyay and Hadaegh [39] consider a space object retrieval’s mission. The

spacecraft’s inertia is considered known, but a large captured object is rigidly attached to the vehicle, so the overall

inertia is unknown. A feedback linearization control law is implemented. The authors highlight the crucial result that

due to the uncertainties on the moments of inertia, certain terms usually considered as negligible perturbations in the

control law are in fact big enough to reach the maximum control capability of the vehicle. Therefore a specifically

designed feedback control plus Proportional Integral Derivative (PID) control law has been implemented and proven

to converge exponentially. Several variations of this controller have been compared, and a simple but efficient D+PD

version picturing a switch from Derivative to Proportional Derivative control when the object’s spin has been cancelled.

Every control law described in this paper make use of the Derivative control, which requires knowledge about the time

derivative of the desired trajectory.

P. Singla and Junkins [40] apply adaptive control methods to a position and attitude spacecraft control. Since the

objective is to perform an autonomous docking, a high level of precision and robustness are required. The EOM are

calculated in the Local-Vertical-Local-Horizontal (LVLH) frame. Position and velocity errors are used to build the

Lyapunov function, while considering that position is acquired with measurements noise. The convergence is obviously

impacted by the noise level, and only when set to zero, in an ideal case, can the global asymptotic stability be guaranteed.

The process to tackle position and attitude control is exactly the same, only the EOM differs. The results are validated

through numerical simulations for a poorly known spacecraft’s mass and inertia.

Almost all the the adaptive attitude control algorithms rely on the CEP as remarked by Seo and Akella [41]. Yet this

assumption made by the controller is almost always wrong because the estimated parameters are not equal to their true

values and that results in a degradation of the performances. Indeed, the PE conditions are not practical to implement,

because the richness required in the signal usually consists in extra components that are not needed otherwise, and thus

results in an excessive amount of input used. Several restrictive assumptions are made in this paper, mainly that the

only unknowns are constant and a full state feedback is available. By using the Immersion and Invariance adaptive

control theory [27] and an attractive manifold, the authors manage to build a controller not relying on the CEP. Its

convergence is once again proven with the Lyapunov stability theory. Yet the main drawback of this method is that the

parameter estimation error z does not necessarily converge to zero. Indeed for a signal W f , only limt→∞W f (t)z(t) = 0

is guaranteed. To sum up, the controller works without a PE signal but does not ensure the estimates convergence. It

can therefore be applied in a Direct Adaptive framework, where the parameters convergence is not one of the objectives

since the estimates are gains and not physical parameters of the model.

All these papers assume that a desired motion and its time derivatives are available. They are required for several

crucial steps : designing the controller and then proving its stability.
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3. Asteroid Modeling

3.1. Modeling of dynamics about a contact binary asteroid

As we have seen in section 2.1.1 several modeling methods are available for an asteroid. A spherical harmonics

model [28] may work at some level but may not be suitable for calculation of the gravity field inside the circumferential

radius of the contact binary body, or known as the XXX sphere. To this date, the most feasible model may be a

polyhedron shape model that consists of a pile of tiles to generate the topography of an asteroid shape. Many trajectory

analyses about an irregularly shaped have been performed to better understand the complex orbital feature about such an

object. Yet it requires heavy calculations, and thus is not a good choice for a first simple model, but can be considered to

improve our method in a future work.

In this work, we apply a simple asteroid model that mimics the gravity field of a contact binary asteroid [15]. This

asteroid model consists of two spherical lobes that are connected with each other by a massless bar fig. 7. It initially

rotates along the maximum moment of inertia axis with a spin rate Ω0. The masses of a larger lobe and a smaller lobe

are m1 and m2, with radii being respectively r1 and r2. The radii are linked the parameter α

r1 = α r2 with α > 1 (1)

The distance between the centers of mass of these lobes is defined as d. Each lobe has the same bulk density ρ. We will

work with the coordinate frame rotating with this asteroid. Its axes are: x along the minimum moment of inertia axis, z

along the axis of rotation, and y in the orthogonal direction.

−→
ξ0

−→
ζ0

−→z

−→x

−→y

θ

m1

m2

Fig. 3 Inertial and Rotating frames

Earlier work brought the following equation. Does an asteroid keep the original shape all the time? If not, how

can a spacecraft dynamically behave? This question comes from the fact that many small asteroids are rubble piles,

objects that are made by accumulations of small rocks and regoliths (the term of regolith was originally used by

Sheomaker to describe small fragments on the Moon). The main asteroid belt is a violent environment in space, because
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asteroids undergo high-velocity impacts, tidal effects, fast rotations, YORP effect, etc. All these processes cause shape

deformations of the asteroids. In the present work, we consider a shape deformation process due to the fast rotation of a

contact binary asteroid.

This asteroid is targeted for a sampling or mining mission involving an orbiter and a lander. After several months of

orbits around the body, a precise surface map has been established and a landing site has been selected. Yet the internal

structure of the asteroid is still largely unknown because assessed only through the gravitational perturbations affecting

the orbit of the spacecraft. We assume that the asteroid is a rubble piles and is thus highly unstable. The landing of the

machines, or their excavation activity then produce an impact important enough to destabilize the asteroid, and it splits

at its weakest point: the junction between the two lobes. Since the rotating velocity of the asteroid was high enough, the

two parts then start to split. The objective of our mission is to keep the spacecraft on its orbit encircling both primaries.

There is obviously a time limit at this goal if the primaries completely diverge from each other. We will then try to make

the orbiter follow its elliptical path for one revolution.

3.2. Two Body Problem Study

In this work, after the lander causes the splitting of the asteroids, the spacecraft has no more direct impact on the

asteroids’ motion. Indeed, its mass is negligible with respect to that of the asteroids. Thus their motion can be derived

by solving the Two Body Problem (2BP) equations. All the equations are written using the coordinates of the frame

rotating with the asteroids. They both remain on the X-axis, and their motion can be characterized by the following

parameters : d their splitting distance, Ω the angular velocity of the rotating frame, and m1 and m2 the masses of the two

asteroids. Ω is defined as the time derivative of θ, the angle between the inertial reference frame and the rotating one.

The equation of motion of the asteroids in the rotating frame can be written as :

Üd = dΩ2 − G
(m1 + m2)

d2 with G = 6.67408 × 10−20 km3kg−1s−2 (2)

This equation gives the position of each asteroid. Indeed, by using the normalized constant mass parameter

µ = m2
m1+m2

with m2 ≤ m1, it is possible to ascertain the positions of each primary along the X-axis : −µd for m1 and

(1 − µ)d for m2.

Yet the angular velocity is also a function of the distance d. We first need the moment of inertia I of the asteroid.

Considering two homogeneous spheres of radii r1 and r2, of masses m1 and m2 and separated with a distance d, the total

inertia is:

I(d) =
2
5
(
m1r2

1 + m2r2
2
)
+

m1m2
m1 + m2

d2 = Ispheres + m1µd2 (3)

Let us introduce mtot = m1 +m2 the total mass of the asteroids, and the normalized inertia of the spheres: In =
Ispheres

mtot
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. Remarking that m1 = (1 − µ)mtot , we obtain:

I(d)
mtot

= In + µ(1 − µ)d2 (4)

We normalize the inertia to have a variable of the same amplitude as the other components of the state vector. And now

using the conservation of the angular momentum L, the angular velocity Ω(d) is linked to the splitting distance d :

L = I(d) Ω(d) = I(d0) Ω(d0) = I(d0) Ω0 (5)

Ω0 being the initial rotating velocity of the asteroid. Then by normalizing this previous equation the angular velocity

is reduced to Ω(d) = Ω0
I (d0)
mtot

mtot

I (d) = Ω0

(
In+µ(1−µ)d2

0
In+µ(1−µ)d2

)
. Which can now be introduced in eq. (2) to give a differential

equation with only one variable d :

Üd = dΩ2
0

(
In + µ(1 − µ)d2

0
In + µ(1 − µ)d2

)2

−
Gmtot

d2 (6)

As can be seen in the equation obtained from Newton’s Second Law eq. (2), two opposite forces are applied on d :

the gravitation that tends to bring the bodies closer and the centrifugal acceleration which has a repulsive action. Due to

this opposition, an equilibrium exists and can be found by plugging Üd = 0 in eq. (2), and gives Ωeq(R) =
√

G(m1+m2)
R3

with R the distance between the centers. When considering the initial situation with the contact binary asteroids, their

initial angular velocity Ω0 is arbitrary. The model adopted for the splitting operation assumes that the angular velocity

is conserved. Then Ω0 can be compared to Ωeq(d0) to predict the future motion of the asteroids.

• if Ωeq(d0) > Ω0 the gravitation force is stronger than the centrifugal one, and thus the asteroids will not split, but

stay in contact.

• if Ωeq(d0) < Ω0 then the asteroids have enough energy to overcome the potential energy barrier and their splitting

distance d will grow to infinity.

Only the second scenario is considered in this paper. This case brings restrictions on the period of the orbit of the

spacecraft since once the smaller asteroid is out of the ellipse, the gravitational perturbations are too large for the craft to

remain on the desired orbit.

3.3. Lagrange Points

To observe the asteroids several kinds of orbits can do the job. When considering the situation before splitting, so

only one asteroid, the natural orbit choice would be circular or elliptical. This choice of orbit is considered in this paper.

And even after the splitting, the control law aims at having the spacecraft remain on that two-bodies orbit.

Another approach would be to consider the situation after the splitting as reference for the orbit choice. Indeed, in
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the context of the 3BP other types of orbits become available. They are located around the gravitational equilibrium

points of the system, which are called the Lagrange points and denoted Li with i ∈ {1, 2, 3, 4, 5}.

−→x

−→y

m1 m2L1 L2L3

L4

L5

Fig. 4 Equilibrium points of the circular restricted 3 Body Problem

For i ∈ {1, 2, 3}, Li is dynamically unstable, thus orbits exist around these three collinear Lagrange points. Several

different families of orbit exist among which are the HALO, Distant Retrograde Orbits (DRO), Planar Lyapunov orbits,

Vertical Lyapunov,... However a necessary condition for these orbits to exist is that the Lagrange point considered is far

enough from the asteroid. In fact in our case of a contact binary system, L1 is initially inside the asteroid. Therefore an

orbit around L1 is impossible before the splitting. For L2 and L3 the answer is not as easy. Depending on the asteroids’

mass ratio they can be inside or outside of the asteroids.

Computing the position of the three collinear Lagrange points boils down to solving a quintic polynomial function,

as described in the book John E Prussing [42].

(M1 + M2)X5 + (3M1 + 2M2)X4 + (3M1 + M2)X3 − (3M3 + M2)X2 − (2M2 + 2M3)X − (M2 + M3) = 0 (7)

M1, M2 and M3 are masses assigned depending on the case considered. Since they are all positive, the six coefficients

written in parenthesis in the previous equation are all positive. Thus the sign of each monomial is written. We can

observe that there is only one change of sign, and the polynomials theory tells us that therefore there is only one positive

root, which is the solution we are looking for. The solution X can be related to the three positions described in fig. 5 :

X = x3−x2
x2−x1

For instance if we want to determine the position of L2, then the three bodies are ordered as m1, m2 and spacecraft at

L2, so the mass associated at each positions are : M1 = m1, M2 = m2 and M3 = 0. Then we can solve eq. (7) for X . We

are interested in x3 − x2, and we know the distance between primaries x2 − x1. L2 being outside of the asteroid means
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(a) General case

x
m1 m2

L2

0

(b) Case : L2

x
m1 m2

L3

0

(c) case : L3

Fig. 5 Different configurations to determine L2 or L3

x3 − x2 > r2, i.e. x3 − x2 = X(x2 − x1) = X(r1 + r2) = X(αr2 + r2) = X(1 + α)r2 > r2 so we just want X(1 + α) > 1

For L3 similar calculations lead to X α
1+α < 1. fig. 6 shows these two relative distances for α ∈ [0, 10]. In the L2

case 6a, if α < 2.847, then L2 is outside the asteroid. As for L3 (6b), it is always outside of the asteroids even if the

distance tends towards zero as α increases.

(a) Case : L2 (b) Case : L3

Fig. 6 Relative distance between Lagrangian point and the surface of the asteroid as a function of α

Even if fig. 6 shows numerous values of the parameter α allowing the desired Lagrangian point Li to be outside of

the asteroid, this condition is not sufficient. Indeed, there must be enough room around Li to place an orbit that does not

intersect with the surface of the asteroid.

r1
r2

m1

m2

d0

Massless rod

Fig. 7 Asteroid model

Let consider three test cases, the asteroids 1996 HW1 [18], Kleopatra [21] and Castalia [19], [43]. Starting from the

actual dimensions of the asteroid, a two-spheres model has been established and its values are gathered in table 1.

They both have a small enough value of α for L2 to be out of the asteroid. We can now compute the distance

of L2,3 to the surface of the asteroid. dL2 = x3 − x2 − r2 = Xd0 − r2, and dL3 = x2 − x1 − r1 =
d0
X − r1. For these
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Name r1 r2 α d0 ρ Ωeq Ω0

1996 HW1 0.95 km 0.6 km 1.583 2.25 km 2 × 103 kg/m−3 2.2947 × 10−4 rad/s 1.992 × 10−4 rad/s
Kleopatra 49 km 48 km 1.021 179 km 4.85 × 103 kg/m−3 2.323 × 10−4 rad/s 3.2409 × 10−4 rad/s
Castalia 0.46 km 0.4 km 1.15 0.86 km 2.1 × 103 kg/m−3 3.844 × 10−4 rad/s 4.2883 × 10−4 rad/s

Table 1 Values of the parameters of the asteroid model for the test cases

numerical values to have a meaning, we will instead consider the relative distance, with respect to the asteroid radius :

rL2 =
dL2
r2
=

Xd0
r2
− 1 and rL3 =

dL3
r1
=

d0
Xr1
− 1.

Name XL2 dL2 rL2 XL3 dL3 rL3

1996 HW1 0.4703 0.4582 km 0.7636 1.1152 1.0675 km 1.1237
Kleopatra 0.6887 75.27 km 1.5681 1.3701 81.6 km 1.666
Castalia 0.6285 0.1405 km 0.3512 1.2745 0.2148 km 0.4669

Table 2 Distance of the Lagrange points

All the numerical values of rL2 and rL3 are smaller than 2. Considering an observation orbit around one of these

Lagrange points with a radius equal to the asteroid’s radius, then the distance between the asteroid and the spacecraft

almost double along the orbit. These orbits are too close to the surface, and that is the reason why they are not selected

as candidate orbits in this thesis. Indeed, at this close distance to the surface of the asteroids, a more detailed model of

their shape and gravity field is required to obtain accurate results [43]. The conclusion that can be drawn from this

study of the Lagrange points position, is that an orbit around those is not adapted to our thesis. Therefore, more classic

elliptical orbits are selected.

The three asteroids of the test cases have been selected over several criteria. They are both obviously contact binary

asteroids. 1996 HW1 and Castalia are Near Earth Asteroids and can thus be considered for exploration and mining

purposes. As can be seen in fig. 1 1996 HW1 also has the shape one would expect for an asteroid that splits up, the two

lobes are clearly separated. Yet this asteroid is on the low-end of the asteroids size scale, its density is not known with

precision, so its internal composition might not be worth the exploration, and also it does not rotate fast enough to split

away : Ω0 < Ωeq . For all these reasons, two other test cases are needed. Castalia and Kleopatra meet the previously

mentioned requirements : in size and high density for Kleopatra, and they both rotate fast enough to split.
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4. Spacecraft Control Law

Considering a mission of exploration and landing on an asteroid, a pair lander/orbiter is the most general configuration.

The orbiter collects data to learn about the surface and the internal structure of the asteroid and thus prepares for the

landing. In the eventuality of the asteroid splitting due to the lander, the orbiter has to adapt to this new situation by

staying on orbit as long as possible. Our objective is to develop a station-keeping method using a low-thrust propulsion

system. Assuming as a first approach, that only the asteroids and the spacecraft interact, the global calculation frame is

the Restricted Three Body Problem. The Sun’s gravitational attractions can be added later as perturbing forces. The

attitude determination relies on position and velocity measurements of the spacecraft with respect to the asteroids which

are then processed through an Extended Kalman Filter to compute the state. As for the thrust determination, a path

following algorithm is implemented and tracks the desired elliptical orbit.

4.1. Implementation

4.1.1. Adaptive Control

As we have seen in section 2.2.1 there are two main categories : direct and indirect adaptive control. Two main

reasons motivated the choice of an indirect method in this paper. First from a mission point of view, the orbiter has to

collect information about the asteroid to prepare for the landing. Hence estimating the unknown plant parameters is

already part of the mission, so these estimates can naturally be used to compute the control input. The other reason is

that a Direct Control implementation requires a reference model which is not available in the case studied here. Indeed

the first step of the Direct process is to take the difference between the state equation and the reference one to obtain the

error e = x − xre f . Then its time derivative Ûe can be calculated, and used to build a candidate Lyapunov function V .

Eventually, the stable control sought for will make ÛV ≤ 0.

In the case considered in this paper, a reference model would be a trajectory to track, i.e. a list of positions, velocities

and accelerations of the spacecraft around the asteroids. The positions are always available since the mission requirement

is to follow a given geometrical path. However, obtaining velocity and acceleration can only be done through the whole

orbit computation.

4.1.2. Orbit Computation

A coasting orbit is usually chosen as reference, in order to minimize the propellant consumption since even in that

case, there will still be some thrust required for adjustments and station keeping. The method to compute a periodic

coasting orbit is described in Koon et al. [44] :

• finding an initial position-velocity vector. The orbit being planar and symmetric with respect to the X-axis, a
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simple first guess vector would be : X0 = [x0, 0, 0, 0, Ûy0, 0]t . x0 is directly linked to the radius of the orbit, so the

only free parameter to determine is the initial velocity Ûy0. An accurate first guess is Ûy0 = RorbitΩ0 +
√

Gmtot

Rorbit
,

with Rorbit the radius of the desired orbit;

• propagating the trajectory until it hits the X-axis again. For the orbit to be periodic this final state must be of the

following shape : Xf = [x f , 0, 0, 0, Ûy f , 0]t . For a circular orbit x f = −x0 and Ûy f = − Ûy0. But usually Ûx f , 0;

• updating the initial state X0 to drive Ûx f to zero. These adjustments are made with a differential correction

algorithm.

• propagating for a whole period once X0 makes | Ûx f | ≤ ε with ε the desired precision.

The differential correction process is described in Chapter 4.2 of Koon et al. [44]. Assuming we are starting around

X0 and we want to reach Xgoal under the natural dynamics ÛX = f (X). The process explains how to make small

modifications of X0. Let φ : (τ, X0) → X(t) be the flow map, associating an initial state X0 at t0 to its value X(τ) after

the natural propagation for a time τ. We want to perturb the initial state with δX0 and see how the final state is modified.

Let δX(τ) be the difference between the perturbed state and the original one, at the time τ, i.e.

δX(τ) = φ(τ ; X0 + δX0) − φ(τ ; X0) (8)

We can then use a Taylor expansion. The second term is conserved, while the higher order ones are neglected to

obtain:

δX(τ) '
∂φ(τ; X0)

∂X0
δX0 = Φ(τ, t0)δX0 (9)

Φ being the State Transition Matrix (STM).

Now we can apply this theory to our case. At the first iteration of the process we started from X0 and reached Xf at

the time t f , while aiming at Xgoal . Then δX(t f ) = Xgoal − Xf ' Φ(t f , t0)δX0 with δX0 = X0,desired − X0 being the

only unknown and also the quantity we are looking for. Then to get X0,desired we just need to invert the STM. In our

case only two components of the state are impacted: Ûy0 and Ûx f , so inverting the whole STM is a waste of time, we can

directly obtain:

δ Ûy0 = − Ûx f

( ∂ Ûx
∂ Ûy

)−1
= − Ûx f

(
Φ(t f , t0)4,5

)−1 (10)

eq. (10) is very efficient for the fine tuning step, to get an extremely precise value. However, when we start with a value

of Ûy0 too far off, the correction step is too small. To improve the speed of the process, we first implemented a linear

correction model. Let ψ : Ûy0 → Ûx f represent the time propagation of the state. Our first approach is a linearization of ψ

to find a more accurate Ûy0 . We implemented a six steps process, repeated until the precision becomes good enough:

• Ûx f ,1 = ψ( Ûy0,1) first point;

19



• Stop if | Ûx f ,1 | < ε , with ε the desired tolerance for this first approach;

• step = 0.1 × | Ûx f ,1 | variable step to get the slope between these two points;

• Ûy0,2 = (1 + step) × Ûy0,1

• Ûx f ,2 = ψ( Ûy0,2) second point;

• Ûy0,1 ← Ûy0,2 −
Ûx f ,2

step Ûy0,1
( Ûx f ,2 − Ûx f ,1) update the initial Ûy0,1 for the next iteration of the loop;

After this first approach to determine Ûy0 , the differential correction using the STM is used to refine the value of Ûy0.

Once it is determined with precision, the whole orbit is fixed given a certain position of the asteroids. At the next time

step they will be further apart, so the previously computed orbit is not accurate anymore and must be recalculated. X0

can then be reused as initial guess instead of restarting from scratch, because for a small displacement of the primaries,

the orbit should not be too much modified.

Because of the time-varying rotation velocity of the asteroids, the only periodic orbit in their rotating frame is the

circular orbit. Therefore an elliptical orbit cannot be designed in the rotating frame using this previous method. The

natural next step is then to try the inertial frame, because ellipses are periodic in that frame. However, that means

recomputing the orbit at each time step with the primaries rotating inside. And their motion cause too much perturbations

on the spacecraft trajectory to allow it to stay on an orbit close enough to the asteroids.

Since the coasting orbit cannot be computed, another option would be a low-thrust orbit that could be used as a

reference. In that case the process at each time step would be :

• getting Xre f the reference state at the last time step;

• getting the geometrical path to follow during the time step;

• finding the thrust vector minimizing the error between the path and the propagation of Xre f ;

• using the whole Direct Adaptive process : calculate e, Ûe, V , ÛV , then u, the thrust vector for the actual state;

This method is too long, especially since the first steps could be applied directly to the actual state X , and then render

the last step unnecessary.

Therefore the overall implementation follows an Indirect Adaptive Control scheme composed of three different

blocks. The controller computes the thrust vector based on the reference path to follow and the current state, its precise

functioning is described in subsection 4.4. The plant propagates the state a time step ahead using the Three Body

Equations detailed in 4.2. The estimator refines the accuracy of the state using measurements as explained in subsection

4.3

The scheme described previously corresponds to a Self-Tuning Controller (STC) as defined in Lavretsky [25]. The

main issue of this scheme is that its bedrock is the Certainty Equivalence Principle : the control u is computed from the

estimates as if they were true. This happens because Controller and Estimator are two different blocks as can be seen on

Figure 8 .

We have seen in 2.2.1 that to ensure the convergence of the parameters to their true values, the input signal must be
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Fig. 8 Self-Tuning Controller (from Lavretsky [25] )

rich enough, i.e. be persistently excited. This numerical condition can be checked during the propagation.

4.2. Restricted Three Body Problem Equations

In the usual studies of the Three Body Problem (3BP) the primaries are one celestial body and one of its satellite,

the third body being the spacecraft whose trajectory is to be described. The most commonly studied 3BP is the Circular

Restricted Three Body Problem (CR3BP), in which the smaller primary has a circular orbit around the other body.

Almost all the literature dealing with a more global case than this simplified one dates back to the 1960s Szebehely [45].

The study of a contact binary asteroid that starts splitting does not fit in the CR3BP case, because the distance between

these primaries is not constant and the rotation of the whole system is also time-varying. Thus, none of the usual

normalization of the CR3BP can be used. For this reason all the calculations are run with the International System units.

The frame used for the calculations is the rotating frame with a time-varying rotation velocity Ω that brings all three

rotating acceleration terms : the centrifugal, Euler and Coriolis forces.

The state vector is a 13-components vector X containing the six usual coordinates of the spacecraft plus the distance

between the primaries d and their splitting velocity Ûd, accompanied by θ the angle between the inertial reference frame

and the rotating one. The 4 following components are constant parameters to be estimated: the mass ratio of the

asteroids µ, their normalized moment of inertia In, the initial rotating velocity of the asteroid Ω0 and the initial distance

between the center of mass of the two lobes d0.

X = [x, y, z, d, Ûx, Ûy, Ûz, Ûd, θ, µ, Ω0, d0, In]T (11)

Since the relevant frame is rotating with respect to the inertial one, the forces considered are the rotating acceleration

terms, the control thrust −→u and the gravitational attraction of the two primaries on the spacecraft. The latter is too light

to affect the asteroids’ motion.

m−→a =
−−→
FG1 +

−−→
FG2 − 2m

−→
Ω ×
−→v − m

−→
Ω × (

−→
Ω ×
−→r ) − m

d
−→
Ω

dt
×
−→r + −→u (12)

Equation 12 can be written projected on the axes of the rotating frame
( −→x ,−→y ,−→z )

to obtain the traditional CR3BP
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equations of motion 13

Üx − 2Ω Ûy −Ω2x = −
Gm1d1

r3
1
−

Gm2d2

r3
2
+

ux

m
,

Üy + 2Ω Ûx −Ω2y = −
Gm1y

r3
1
−

Gm2y

r3
2
+

uy
m
,

Üz = −
Gm1z

r3
1
−

Gm2z
r3
2
+

uz
m
.

(13)

After some calculations, eq. (2) and eq. (13) can be gathered using the 13-components vector formulation :

ÛX = f(X, u) =



Ûx

Ûy

Ûz
Ûd

−G m1d1
r3

1
− G m2d2

r3
2
+

ux

m + xΩ2 + 2 ÛyΩ + y ÛΩ

−G m1y

r3
1
− G m2y

r3
2
+

uy

m + yΩ2 − 2 ÛxΩ − x ÛΩ

−G m1z

r3
1
− G m2z

r3
2
+

uz
m

dΩ2 − G (m1+m2)
d2

Ω

0
0
0
0



with Ω(d) = Ω0

(
In + µ(1 − µ)d2

0
In + µ(1 − µ)d2

)
(14)

with d1 = x + µd and d2 = x − (1 − µ)d r1 =
√

d2
1 + y2 + z2 and r2 =

√
d2

2 + y2 + z2

The Jacobian of f can then be calculated :

F =
∂f
∂X
=



04×4 I4×4 04×1 04×4

dF4×4 Ω4×4 04×1 dCST4×4

01×4 01×4 01×1 01×4

04×4 04×4 04×1 04×4


All the details are in Appendix A 6. The shape of the top left 8 × 8 sub-matrix of F is very similar to the one used in

the CR3BP to propagate the State Transition Matrix (STM); it is serving the same purpose here. The addition of the

constants results in the addition of the six last columns and rows which are almost all empty.

4.3. Extended Kalman Filter

Since the spacecraft can only get access to its state through noisy measurements, an algorithm to refine those

values and acquire accurate data is required. To fulfill this task an Extended Kalman Filter (EKF) with discrete time
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measurements has been implemented. The first step in an estimation process is to determine if the system is observable.

Indeed, if this is not the case, then another set of independent and observable variables must be selected. Since our

system is nonlinear, the traditional observation matrix of linear systems is not valid. Song and Grizzle [46] establish the

observability conditions for a nonlinear discrete-time system, by building a local asymptotic observer. Let consider the

following system, and its ’noisy’ version:

xk+1 = fD(xk, uk) zk+1 = fD(zk, uk) +Qwk

yk = h(xk, uk) ζk = h(zk, uk) + Rvk
(15)

We will need the Jacobians of the system: AD =
∂ fD
∂x and C = ∂h

∂x and evaluate them at different times. The local

asymptotic observer is then:

OD(k, n − 1) =



C(x−
k−n+1)

C(x−
k−n+2)AD(xk−n+1)

...

C(x−
k
)AD(x−k−1)...AD(x−k−n+1)


(16)

We can then check the usual observability condition: if rank(O) = n, then the system is locally observable. Our

system being continuous, a small variation of this method has been implemented. We will denote with a C the continuous

quantities, and with a D those from the discrete case. The propagation equation are then xk+1 = fD(xk) and Ûx = fC(x).

At the first order,

fC(xk) = Ûxk '
xk+1 − xk

dt
=

fD(xk) − xk
dt

so fD(xk) ' xk + fC(xk)dt (17)

Then we can calculate the Jacobians :

AD(xk) =
∂ fD
∂x
(xk) = I +

∂ fC
∂x
(xk) dt (18)

The observation equation are unchanged so CD = CC . We can then plug eq. (18) in eq. (16) to obtain the continuous

asymptotic observer OC

After implementation of OC , the system is found to be always asymptotically locally observable. Yet this concern

the locally linearized system. The global observability of the nonlinear system is more difficult to assess, and out of the

scope of this thesis.

With the notations used in the previous section 4.2, X is the estimated state and Y the actual state, f is the state

transition function, F its Jacobian, Z the observation and u the thrust. The other matrices come from the EKF and are

respectively : R the covariance matrix of the measuring noise V(t), Q the covariance matrix of the process noise W(t), h
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the observation function and H its Jacobian, G the gain matrix, P is the prediction error and I the identity matrix of the

appropriate size.

MODE L PREDICT UPDATE

ÛY (t) = f
(
Y (t), u(t)

)
+W(t) ÛX(t) = f

(
X(t), u(t)

)
G = PHt (HPHt + R)−1

Z = h(Y ) + V(t) ÛP(t) = F(t)P(t) + P(t)Ft (t) +Q X = X− + G(Z − h(X−))

P = (I − GH)P

(19)

The observation Z is the information received by the spacecraft. Z is composed of two 6-components position-

velocity vectors between the spacecraft and both asteroids. The sensors measure distance and speed in the inertial frame

based on fixed stars. For simplicity’s sake, it has been assumed that the frame of the asteroids rotates around the Z-axis

of the inertial frame. This rotations is parametrized by the angle θ and its time derivative dθ
dt = Ω(t). So the observation

function transforms a 13-components rotating vector into two 6-components inertial vectors :

h(X) =



cos(θ)(x + µd) − sin(θ)y

sin(θ)(x + µd) + cos(θ)y

z

−Ω
(
sin(θ)(x + µd) + cos(θ)y

)
+ cos(θ)( Ûx + µ Ûd) − sin(θ) Ûy

Ω
(
cos(θ)(x + µd) − sin(θ)y

)
+ sin(θ)( Ûx + µ Ûd) + cos(θ) Ûy

Ûz

cos(θ)(x − (1 − µ)d) − sin(θ)y

sin(θ)(x − (1 − µ)d) + cos(θ)y

z

−Ω
(
sin(θ)(x − (1 − µ)d) + cos(θ)y

)
+ cos(θ)( Ûx − (1 − µ) Ûd) − sin(θ) Ûy

Ω
(
cos(θ)(x − (1 − µ)d) − sin(θ)y

)
+ cos(θ)( Ûx − (1 − µ) Ûd) + cos(θ) Ûy

Ûz



(20)

The observation has to be built from the state X to follow the EKF process, and that is the reason of the presence of

θ in the state vector. The detailed calculations of the Jacobian H = ∂h
∂X can be found in Appendix section 6.

Concerning the prediction error matrix P, several improvements have been implemented following the advice from

Schneider and Georgakis [23]. First comes the choice of the initial value P0. The prediction matrix contains values

between zero and one, based on the confidence on the accuracy of the estimates; 0 being for a perfect estimate and 1

for a poor estimation. The best initialization is to take P0 = (X0 − Y0)
T · (X0 − Y0) because it directly quantifies the

precision of the estimate. However, the actual initial state Y0 must be available, which is not the case here. A simple

option would be to initialize P0 as a matrix full of ones, then no over-confidence is given to any estimate. Yet assigning
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the worst initialization is not a good idea, since some information is available concerning the initial state. Indeed, the

approximate size of the zone around the estimate where the true value lies is usually known. The initial state estimate

X0 is built from the true one using X0 = D · Y0, with D a diagonal matrix which terms follow a normal distribution of

average one and of standard deviation σ = 0.07. It is reasonable to assume this σ known since it characterizes the

previously mentioned size of the zone. And then P0 = (2σX0)
T · (2σX0).

The second improvement is a more robust update equation for P using the Joseph stabilized version :

P = (I − GH)P(I − GH)T + GRGT

4.4. Controller

The controller is the part of the process that designs the control input, for the current position to track a certain

reference described in the mission requirements. In this paper the spacecraft aims at orbiting elliptically around the

asteroids. The controller can be designed along two main philosophies : Path Following or Trajectory Tracking.

A path is a list of positions, while a trajectory also has a timing law associated, i.e. a velocity and acceleration

at each position. Yet having both of them available on the desired trajectory is not always the case. Moreover for a

specific mission or due to a very unusual asteroid shape, the orbit may need to be specifically designed for this case and

to be more complicated than a circle or an ellipse. In such a case, the propagation of the desired orbit can be a lot more

difficult, as detailed in section 4.1, especially to obtain in real-time the desired acceleration and velocity at a certain

position.

4.4.1. Path Following

Thus the solution is to implement a Path Following strategy, using a slight variation of the method developed in

[24]. The usual method is to add an extra control parameter in order to describe the timing law which parametrizes the

position to track on the desired path, transforming path following into trajectory tracking. And then at each time step an

optimization problem must be solved to find the best thrust and timing law for the next step. In a Trajectory Tracking

context a PID controller would be used to stabilize the trajectory close to the desired path. Yet in the Path Following

case the velocity and acceleration on the path are not available so we cannot implement a Feedback Linearization

algorithm with a PID controller. Instead, the thrust computation algorithm has access to a longer time horizon, to be

able to anticipate and prevent divergences. This anticipation helps preventing overshoot and oscillations which usually

happen when trying to minimize the distance to a path when looking only one time step ahead.

The timing-law is also an extra parameter to optimize but the insights about its value are difficult to acquire. Thus a

simpler method has been implemented, the position to track is just the point on the desired path that is the closest to the

current position.

At each time step the best thrust to apply to the spacecraft is calculated. For a predetermined thrust, the trajectory is

25



propagated for a number PH of time steps δt, PH being the Prediction Horizon. And then the integral error of this

trajectory with respect to the desired path is calculated following the method described in [47]. This error is considered

as a cost to minimize and this optimization problem is to be solved at each time step in order to determine the best thrust

vector.

The minimization problem to solve is finding the thrust vector u in order to minimize the error. u is bounded with

uin f and usup , which are characteristics of the thrust system.

min
∀t uin f ≤ u(t) ≤ usup

t0+PH∫
t0

| |X
(
t, u(t)

)
− Xre f (t)| | dt (21)

The implementation being not continuous, the thrust is constant per time step, so eq. (21) has to be modified. A

rolling horizon method is implemented with four different time scales, as described in fig. 9.

• The Scheduling Horizon SH is the total time range of the mission;

• The Prediction Horizon PH is subdivided into N Control Horizons : PH = N × CH. At each time step the state

is propagated over PH for the system to anticipate and provide an appropriate answer;

• Over the Control Horizon CH, the thrust is considered constant. It can be divided into H time steps δt because

the thrust does not vary too much over just one time step. So CH = H × δt. The thrust will actually change at the

next time step, but this process allows to look further ahead for almost the same computation time;

• The time step δt is the smallest time scale, it corresponds to the step of the iterations of the state propagation;

SH : Scheduling Horizon
PH : Prediction Horizon
CH : Control Horizon
δt : time step

PH − 1
CH − 1

δt
iter-1

PH − 2
CH − 2

δt
iter-2

PH − 3
CH − 3

δt
iter-3

Fig. 9 Rolling Horizon with N = 4 and H = 3

To sum up, there are two design parameters for this rolling horizon scheme : the integers N and H. Their values will

be optimized in the section 5. We can now update eq. (21) with the rolling horizon to finally obtain eq. (22)

min
uin f ≤u1≤usup

...
uin f ≤uN ≤usup

N∑
k=1

t0+kCH∫
t0+(k−1)CH

| |X(t, uk) − Xre f (t)| | dt (22)

In the current implementation only the elliptical and circular orbits cases have been considered, leading to a specific
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algorithm to calculate the distance between the spacecraft and the closest point on the path. But more general algorithm

exist [48] and allow any type of orbit to be followed.

A common issue arising from this algorithm, is that the direction in which to follow the path is not prescribed, and

thus the minimization can also lead to an abrupt turn-around. To prevent this, a simple sign check of the cross product

between the position vectors at the beginning and at the end of the time Horizon can be performed, and a higher cost

given to the unwanted direction of propagation.

4.4.2. Trajectory Tracking

Before implementing the Path Following strategy for the reasons detailed previously, we started with a trajectory

tracking approach. This method is able to successfully follow a circular orbit, but does not work for elliptical orbits.

That is the reason why we had to abandon it.

We adopted the tracking strategy described in [49]. Our state equations fit into the dynamical model described in

the reference:

B(q) Üq + c(q, Ûq) + g(q) + friction model = B(q) Üq + n(q, Ûq) = u (23)

with q the state vector and u the control input. The objective is to follow a desired trajectory qd(t), t ∈ [0,T] denoted

with a subscript d. qd must also be at least twice differentiable. The model estimates are denoted with a hat ·̂. And so

the desired system is : ûd = B̂(qd) Üqd + n̂(qd, Ûqd). Several of the command laws have been tried :

• a feedback linearization with a Proportional Derivative (PD) controller:

u = B̂(q)
[
Üqd + Kp(qd − q) + Kd( Ûqd − Ûq)

]
+ n̂(q, Ûq)

• a feedback linearization coupled with a Proportional Integral Derivative (PID) controller:

u = B̂(q)
[
Üqd + Kp(qd − q) + Ki

∫
(qd − q)dt

]
+ Kd( Ûqd − Ûq) + n̂(q, Ûq)

• and even a feedback linearization with a Cube PID controller based on [50]: u = B̂(q)
[
Üqd + Kp(qd − q) +

Ki

∫
(qd − q)dt + Kd( Ûqd − Ûq)

+ Kpc(qd − q)3 + Kic

∫
(qd − q)3dt + Kdc( Ûqd − Ûq)3

]
+ n̂(q, Ûq)

The challenge here was to find proper values for the gains Kp,Ki and Kd. A two-step method was implemented:

first a grid search to reduce the interval of possible values, and then to refine the search a Particle Swarm Optimization

algorithm (PSO) was used, following the same method as in [51].

During the gains optimization the cost function to minimize has been selected to be the integral error with respect to

the desired orbit:

cost =
∫ T

0

(
|xd(t) − x(t)| + |yd(t) − y(t)| + |zd(t) − z(t)|

)
dt (24)

If the trajectory diverges of more than a set distance dcut from the reference one, then the cost is set to infinity. Even if

PSO is a perfectly sufficient optimization algorithm, the prior Grid Search is necessary. Indeed, for some values of
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the gains, the controller is not robust and thus the associated trajectory will diverge in most cases. But if the noise

along the propagation is well-behaved then the trajectory can converge, and this happens usually with a low probability.

Since during the Grid Search each combination of gains is tested only once, such a case will be eliminated due to its

highly probable divergence. On the contrary, the stochastic component of PSO can test close gains combination a great

number of time and then manage to find an unstable minimum. During the tests it occurred that these minimum had

extremely low costs. Therefore is the Grid Search is not performed before PSO to restrain the test field to stable values,

the minimum found by PSO is likely to be unstable and thus useless. To precise the meaning of an unstable trajectory, as

previously employed would be that by launching several times the same computations, with the same gains, the results

are always different due to the process and measure noise.

Another drawback of the trajectory tracking is that the gains must be recalculated for each new orbit, and their

optimization is computationally expensive.
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5. Results

5.1. Initialization

The method developed in this thesis is applicable to any contact binary asteroid system. To obtain realistic numerical

values our algorithm has been applied to three actual asteroids : Castalia, Kleopatra and 1996 HW1. These three test

cases use the values gathered in the Table 1 for the asteroids model.

The spacecraft model is close to the orbiter Rosetta that performed a similar mission. The orbit has been chosen big

enough for the spacecraft to complete a whole orbit after the splitting, while the final distance between the asteroids

becomes comparable to the orbit size.

Table 3 Value of the main parameters for the test case

Asteroid parameter Orbit Value Spacecraft Value Algorithm Value
d0 : distance between centers Semi major axis 10 × d0 mSC 3 × 103 kg Tstep T/400
T : asteroids’ rotation period Eccentricity 0.6 Max thrust 0.1 N H 2

N 5
dCUT 10 km

Tstep is the time step for the calculations. It is chosen as a fraction of the period for scale purposes. Since the

asteroids are splitting, the total moment of inertia increases, so to conserve the angular momentum their rotating velocity

decreases, thus the period T increases. Therefore to prevent the number of time step to grow too much, their size is

updated with T . dCUT is the maximal distance allowed between the actual trajectory and the desired one. If the error

reach this limit, then the calculations are stopped and this case is considered as a failure.

The Extended Kalman filter also requires several initialization. We already discussed how to set the initial value of

the prediction error matrix P0 = (2σX0)
T · (2σX0), with σ = 0.07. As for the covariance matrix R of the measuring

noise, its values were chosen constant throughout all the experiments. The measures are composed of two 6-components

position-velocity vectors between the spacecraft and each asteroids. Therefore, R is a 12× 12 diagonal matrix. Elements

1 to 3 and 7 to 9 are associated with the distance measures, while the others are related to the relative velocity measures.

Thus, only two scalar values are sufficient to define the whole R matrix. In the simulations, we chose R(1, 1) = 10−2 km

and R(4, 4) = 10−4 km/s

The initialization of the covariance matrix Q of the process noise is more tricky. Indeed Q is constant and its value

is crucial to the success of the estimation process. Valappil and Georgakis [52] describes that if the value of Q is too

low with respect to its nominal value, then the EKF is overconfident in the estimate and ignore the measurements. If Q

is too high, then the estimates will rely too much on the measures and become noisy. So far, the value of Q has then

been selected by trial and error, but we are working on an automated process.
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5.2. First results

The first step of the process is to prove that a control law is actually needed, because the natural dynamics of the

spacecraft would not maintain it on orbit around the splitting asteroids. For the asteroid Castalia, when no thrust is

applied the spacecraft flies away as can be seen in Figure 10. The reference trajectory is red, while the actual one is blue.

The same divergence happens for all of our test cases. The spacecraft initially has the velocity required to stay on the

specified elliptic orbit around one central body of mass mtot . When the asteroids start to split, this assumption does not

hold anymore and the gravitational force acting on the spacecraft decreases, it has therefore a velocity too high to stay

on the initial orbit and will then diverge.

Fig. 10 Free propagation around asteroid Castalia in the rotating frame

When the spacecraft is allowed to use thrust control and the path following method described in section 4.4, two

parameters must be chosen by the user N and H. They both are positive integers, so even without any knowledge of their

role, the first value tested is N = H = 1. However, as can be seen on fig. 11, the result is not optimal. We will study

in more details the role of these two parameters in section 5.3, and how to optimize their choice. Indeed, they play a

crucial role in the precision of the path following algorithm and also in the total computation time of the overall method.

The asteroids’ motion is not affected by the spacecraft and its controller. So we can already access their splitting

distance d in section 5.2. The curve is not as smooth as expected because of the white process noise introduced in our

equations of motion to represent the unmodeled dynamics.

We will use two scales to represent our data: either the time or the angle of the spacecraft on its orbit, depending on

which is the most appropriate for the data to plot. They can both be used as X-axis without ambiguity, because when the

spacecraft does not turn around, we can build a bijection between these two parameters, as section 5.2 proves it.
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Fig. 11 Orbit for H = N = 1

Fig. 12 Evolution of the distance between the lobes of the asteroid Castalia
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Fig. 13 Angle of the spacecraft on its orbit around the asteroid

5.3. Optimization of the parameters of the tracking algorithm

Two parameters of the controller must be chosen by the user: H and N as they are defined in section 4.4. They are

responsible for the anticipation of the controller. If H × N is too small then the controller cannot anticipate trajectory

modifications and an overshoot phenomenon take place, leading to numerous unwanted oscillations as can be seen in

fig. 11.

Now we will study the effect of the parameter N , with H fixed at the value 2. This choice for the value of H will be

justified later. We computed the orbit around the asteroid Castalia for N ∈ {1, 2, 3, 4, 5, 6} in respectively fig. 14, 15

16, 17, 18 and 19. We can remark that the initialization of the estimated state is noisy and therefore out of the desired

path, but the EKF corrects it in a few iterations. When N is too small the controller cannot anticipate enough and we

can see the oscillations around the desired orbit. These oscillations decrease in amplitude with the increase of N until

N = 4 where the progress are less striking than before.

We can remark that the initialization of the estimated state is noisy and therefore out of the desired path, but the EKF

corrects it in a few iterations. The starting point is at the right extremity of the ellipse, which is in fact the apogee of the

orbit. The primaries start around (0, 0) and the spacecraft at (12, 0). The orbit is propagated for a complete revolution, it

stops when the spacecraft hits the positive X-axis again. The asteroids don’t travel the same distance in the figures

because the time required for the spacecraft to complete its orbit is not the same, it depends on the efficiency of the

controller.

To measure the efficiency of the controller, we established a metric : ε =
∫ 2π
φ=0 | |

−→
X −
−−−→
Xdes | | dφ. ε is the integral
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Fig. 14 Orbit around Castalia with N = 1 and H = 2

Fig. 15 Orbit around Castalia with N = 2 and H = 2
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Fig. 16 Orbit around Castalia with N = 3 and H = 2

Fig. 17 Orbit around Castalia with N = 4 and H = 2
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Fig. 18 Orbit around Castalia with N = 5 and H = 2

Fig. 19 Orbit around Castalia with N = 6 and H = 2
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error over an orbit between the actual and desired positions. We assumed that between two time steps the position of the

spacecraft is almost the same, thus the thrust vector to apply should also be the same. This assumption is reflected

by H, which is the number of consecutive time steps over which the thrust is considered constant in the optimization

process. It enables to drastically cut down the computation time for the same Prediction Horizon. fig. 20 shows that the

assumption is valid for H ∈ {1, 2, 3}.

Fig. 20 Integral error ε as a function of H

Fig. 21 Integral error ε as a function of N

On the other hand, the impact of N should be straightforward: increasing it expands the Prediction Horizon without

making any assumption. Therefore, the higher N is, the better the accuracy should be. However, fig. 21 shows that for
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N > 2 the accuracy is not really impacted, and we can also see not great improvements for N > 4 in fig. 17, 18, 19.

Another parameter giving an insight about the efficiency of the path following algorithm is the total impulse. This

quantity is the time integral of the thrust needed by the spacecraft to stay on orbit. The time horizon enables the program

to anticipate and prevent the waist of propellant. Therefore by increasing N and H the total impulse decreases, as can be

seen in fig. 22.

Fig. 22 Total impulse as function of N and H

Among the three main steps of the algorithm: thrust calculation, integration of the EOM and EKF, the one that

requires the most computation time is the thrust calculation, because of the optimization problem to be solved. The

computation time is highly dependent on the value of N chosen. Indeed, it directly determines how many 3D thrust

vectors the optimizer has to determine. In fact, the dimension of the search space is 3 × N . Therefore, one could expect

a linear growth of the computation time with N , but it is absolutely not the case, as can be seen in table 4. The reason is

that the optimizer is the nonlinear MATLAB method f mincon.

Table 4 Computation time

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7
5 min 24 min 58 min 1 hr 56 min 3 hr 21 min 5 hr 24 min 7 hr 41 min

On the other hand, the computation time is almost not affected by the value of H, as shown in fig. 23. Indeed,

increasing H increases the time interval over which the equations of motion are integrated, but this is negligible

compared to the time consumed by the optimizer.

Therefore the determination of the parameter N results from a compromise between accuracy and computation time.

If we want this program to run on real time in the spacecraft, then the time is constrained and will dictate the possible
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Fig. 23 Computation time as function of N and H

accuracy.

5.4. Parameters Convergence

We first need to ensure that the system is observable. A global nonlinear observability check is out of the scope of

this thesis. Yet, a simple observability check on the locally linearized system is easy to implement and brings useful

results. We implemented the method summarized by the two equations 15 and 18. rank(OD) is computed at each time

step, and compared with the size of the state vector.

Initially, our state vector was: X = [x, y, z, d, Ûx, Ûy, Ûz, Ûd, θ, m1, m2, I1, I2, Ω0, d0]. This system is not

observable: rank(OD) = 13 < length(X) = 15. Indeed, in the equations of motion, the two moments of inertia of the

asteroids I1 and I2, always appear together as I1 + I2 in the formula of Ω. Therefore, they could not be distinguished and

needed to be combined together. We also normalized them by the total mass to eventually obtain a parameter In of

magnitude closer to the other states.

The masses of each asteroids are also not observable together. Indeed, we have two distance measurements, but

three parameters to describe their distance: d, m1 and m2, because their positions are linked through the mass ratio

µ = m2
m1+m2

: along the X-axis the position of m1 is −µd, while the other is (1− µ)d. Thus, to make the system observable

we considered µ instead of m1,2 in the state vector. So we reduced its length to 13 while maintaining the rank of the

observability matrix, which is now full rank. The system is now locally observable.

We have seen in section 2.2.1 that one of the main point of the adaptive control implementation concerns the

convergence of the estimates to their true values. We considered 13 parameters to estimate and grouped them together

in our state vector X = [x, y, z, d, Ûx, Ûy, Ûz, Ûd, θ, µ, Ω0, d0, In]. They have been estimated and compared to their
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true values along the propagation.

Fig. 24 Actual and estimated values of x

Fig. 25 Actual and estimated values of y

The x and y components have very similar roles in the equations of motion, and thus they converge together. This

convergence takes place in most cases, because it is very straightforward to find x and y based on the observations of

distance with respect to the asteroids. They are almost directly observable. The situation is exactly the same for Ûx, Ûy and

the velocity measures.

The third axis z is not considered like the two others in the observations h as one may remark in eq. (20). z and Ûz are

directly observable because the inertial frame in which the spacecraft takes its measurements has the same Z-axis as the

39



Fig. 26 Actual and estimated values of z

asteroids frame. This assumption simplifies the calculations, but can easily be discarded to render the problem more

general without affecting the results. Since they are directly measured, the convergence error is sufficiently small that

even the process noise is clearly visible in fig. 26

Fig. 27 Actual and estimated values of d

The initial splitting velocity Ûd0 is null. The splitting is only due to a rotating velocity initially too high. So the

acceleration Üd is initially positive and then settles to zero, making Ûd constant and positive, and thus d has a constant

slope. If we set Üd = 0 in eq. (2), we find the equilibrium rotating velocity Ω2 = Gmtot

d3 = Ω2
eq . Therefore, as soon as d

settles to a constant slope, then it means that Ω(d) = Ωeq
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Fig. 28 Actual and estimated values of θ

As seen previously the splitting distance between primaries keep increasing because Ω(d) ≥ Ωeq . The rate of

change of θ decreases when d increases because Ω(d) is proportional to d−2. We can also see the slowing down of the

rotation as a consequence of the increase of the moment of inertia of the system when the asteroids part while keeping a

constant angular momentum.

Fig. 29 Actual and estimated values of µ

The convergence of the mass ratio µ is slow but still takes place. The observability condition and the EKF do not

provide a time length required for the estimates to converge to their true values. Instead of increasing the length of the

experiment, we can reduce the time step. Thus, for the same orbit there will be more observations, and more iterations
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of the EKF, which should improve the convergence.

Fig. 30 Actual and estimated values of Ω0

The estimates of Ω0 and d0 both improve quickly at the start and finally settle to a value closer to the actual one.

Fig. 31 Actual and estimated values of d0

The convergence of In is more complicated, and should be compared with those of µ. These two parameters are

related to the mass distribution of the asteroids, and are heavily affected by the spacecraft’s distance to the primaries.

Indeed, during part of the orbit, the spacecraft is closer to the bigger lobe, whose gravitation pull will be stronger and

bias the estimates of In and µ. But in the end, both estimated parameters still seem to converge to a value close to the

reference.
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Fig. 32 Actual and estimated values of In

To sum up, the convergence of the estimates depends on how easily they can be inferred from the observations, but

usually takes place for all parameters.
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6. Conclusion

The dynamic of a splitting contact binary asteroid has been studied using the Two Body Problem frame. Several

types of observation orbits around those asteroids have been compared, to finally retain elliptical orbits. A path following

strategy has been implemented in an overall Indirect Adaptive Control scheme. This method can be applied to any shape

of orbit, being thus more general than a Direct Adaptive Control scheme using a Trajectory Tracking algorithm. The

rolling horizon parameters have been optimized to give access to the controller to a maximum of insight while keeping

an efficient computation time. This process has been applied to three test cases : the asteroids Kleopatra, Castalia and

1996 HW1.

Several improvements of this method can be considered for future work, namely taking into account the mass

distribution of the asteroids, to have a more detailed model of their gravitational field and thus allow proximity operations

and closer orbits. A model of spheroid and ellipsoid using the Full Two and Three Body Problems described in [30]

and [32] would bring a considerable accuracy improvement. The algorithm has been tested on three cases, but every

time the covariance matrix Q of the EKF must be redesigned and adapted to the values of the case. An automated

procedure to determine Q, would then enable to automate the whole method, whose robustness could then be tested

through several Monte-Carlo simulations. The problem is also partially considered in a 3-dimensions space. Indeed, we

made a restrictive assumption: the spacecraft knows that the asteroids are in a plane parallel to its inertial frame, and

rotating around their shared Z-axis. This assumption can be easily relieved in a future work, and should not have a great

impact on the results.
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Appendix A. Details of the Jacobian F

F =
∂f
∂X
=



0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
∂ f5
∂x

∂ f5
∂y

∂ f5
∂z

∂ f5
∂d 0 2Ω 0 ∂ f5

∂ Ûd
0 ∂ f5

∂µ
∂ f5
∂Ω0

∂ f5
∂d0

∂ f5
∂In

∂ f6
∂x

∂ f6
∂y

∂ f6
∂z

∂ f6
∂d −2Ω 0 0 ∂ f6

∂ Ûd
0 ∂ f6

∂µ
∂ f6
∂Ω0

∂ f6
∂d0

∂ f6
∂In

∂ f7
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∂ f7
∂y

∂ f7
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∂ f7
∂d 0 0 0 0 0 ∂ f7
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0 0 0 ∂ f8
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49



Details of the Jacobian H

H =
∂h
∂X
=
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