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Abstract

After docking to the International Space Station (ISS), the Nauka module suffered a software error causing

its thrusters to misfire. In turn, these uncontrolled thrusters rotated the whole space station by 540° before
being counteracted by other thrusters of the ISS. Motivated by such a scenario, this thesis investigates the

guaranteed resilience of autonomous systems to a similar class of malfunctions called partial loss of control

authority over actuators. These malfunctions are characterized by actuators producing uncontrolled and

undesirable outputs instead of following the controller’s commands. A loss of control authority can be caused,

for instance, by a software bug as in the ISS example or by an adversarial takeover of some actuators of the

system. In this setting, we investigate the malfunctioning system’s remaining capabilities to complete its

mission in terms of resilient reachability and resilient trajectory tracking. We also quantify the resilience of

linear systems by comparing the reachability performance of the nominal dynamics with that of the worst-case

malfunctioning dynamics. We extend our resilience investigation to systems further inflicted with actuation

delays preventing an immediate cancellation of the undesirable outputs. We illustrate our theory on a wide

range of applications including an octocopter, a fighter jet model, and an orbital inspection mission.
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Notation

∈ belong to

⊆ subset

∪ union

∩ intersection

:= defined as

N, R and C fields of natural, real and complex numbers

Rn field of real vectors of dimension n

R+ nonnegative real numbers

R+
∗ positive real numbers

[[a, b]] inclusive set of integers between a ∈ N and b ∈ N
∅ empty set

Re(S) ≤ 0 real part of all s ∈ S is nonpositive

Re(S) = 0 real part of all s ∈ S is null

∥x∥ :=
√∑

x2i Euclidean norm of a vector x = (x1, ..., xn) ∈ Rn

∥x∥∞ := max |xi| infinity-norm of a vector x = (x1, ..., xn) ∈ Rn

∥ · ∥X canonical norm on a space X other than Rn

In n× n identity matrix

0n,m n×m zero matrix

1n n× 1 vector of ones

Im(A) and Ker(A) image and kernel of a matrix A ∈ Rn×m

rank(A) = dim Im(A) rank of matrix A

det(A) determinant of matrix A

A⊤ and A−1 transpose and inverse of matrix A

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ norm of matrix A

A ≻ 0 and A ⪰ 0 positive definite and positive semidefinite matrix A

λ(A) and σ(A) set of eigenvalues and singular values of A(
λAmin, λ

A
max

)
and

(
σAmin, σ

A
max

)
extremal eigenvalues and singular values of A

∥x∥A :=
√
x⊤Ax A-norm of vector x ∈ Rn if A ≻ 0

C(A,B) :=
[
BAB . . . An−1B

]
controllability matrix of pair (A,B)
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S :=
{
x ∈ Rn : ∥x∥ = 1

}
unit sphere in Rn

BX(c, ε) :=
{
x ∈ X : ∥x− c∥ ≤ ε

}
closed ball of center c and radius ε in the space X

E(c, P ) :=
{
x : (x− c)⊤P (x− c) ≤ 1

}
ellipsoid of center c and shape matrix P ≻ 0

(
m
p

)
number of p-combinations among m elements for p ≤ m ∈ N

p! factorial of p ∈ N

span(·) mapping of vectors to their linear span

⟨·, ·⟩ standard scalar product in Rn

∥u∥2L2
:=
∫ T
0
∥u(t)∥2dt L2-norm for T > 0

L2

(
[0, T ], Rm

)
space of square integrable functions u : [0, T ] → Rm

L
(
X,Y

)
space of continuous linear maps from a space X into space Y

X∗ := L
(
X,R

)
topological dual space of a Banach space X

x∗ ∈ X∗ dual vector of x ∈ X, i.e., associated linear form from X to R
S∗ ∈ L

(
Y ∗, X∗) adjoint linear map of S ∈ L

(
X,Y

)
∂X boundary of a set X

int(X ) := X\∂X interior of X
relint(X ) relative interior of X as defined in [1]

−X = X symmetric set X
co(X ) convex hull of X

X ⊕ Y :=
{
x+ y : x ∈ X , y ∈ Y

}
Minkowski addition of sets X and Y

X ⊖ Y :=
{
z : {z} ⊕ Y ⊆ X

}
Minkowski difference

F(X ) :=
{
f : f(t) ∈ X for all t ≥ 0

}
set of functions f : R+ → X

f ◦ g = f(g) composition of functions f and g

ẋ(t) := d
dtx(t) time derivative of a function x

f (k) kth derivative of function f for k ∈ N
projr(x1, . . . , xn) := (x1, . . . , xr) ∈ Rr projection map from Rn onto Rr with r ≤ n
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Chapter 1

Introduction

Autonomous systems are becoming ever more widespread as they accomplish increasingly varied and complex

tasks such as controlling utility systems [2]–[4], industrial processes [5], [6], driving cars [7], flying aircraft [8]–

[10] and controlling spacecraft [11]–[13]. Because of the critical nature of these applications, their autonomous

controllers must be reliable and guarantee safe operations even after possible malfunctions. Let us describe

some motivating examples of malfunctions impacting safety critical autonomous systems.

On July 29th 2021, after the Nauka module docked to the International Space Station (ISS), a software

failure caused a misfire of all the module’s thrusters [13]. As a result, the whole station lost attitude control

for 15 minutes and rotated by 540◦ possibly endangering the ISS crew. Eventually, other thrusters on the ISS

were fired to counteract the uncontrolled and undesirable thrust until the Nauka module ran out of fuel.

Commercial aircraft can also be considered as safety critical autonomous systems since they are mostly

operated by autopilots. However, these autopilots are not designed to fly in off-nominal conditions, where

they disengage sometimes without advance warning [9]. Such off-nominal situations may arise in upset flight

conditions, after a loss of control effectiveness over some actuators, or after changes of the airplane’s dynamics.

These are the primary causes of in-flight loss of control, which is the largest fatal accident category for large

commercial jets [9]. More specifically, a loss of control effectiveness over a flight control surface can be caused

by a leak in the hydraulic system responsible for moving said surface [14]. As a result the pilot has less

control over the aircraft and might not be able to fly it safely anymore.

Autonomous systems’ malfunctions are not always accidental as in the previous two examples, they can

also be caused purposefully by adversarial attacks. Indeed, control systems are increasingly connected to the

Internet [6], and hence they are more prone to cyber attacks. A well documented example is the attack on

the Maroochy sewage control system in Australia [2], [5], [6], where a disgruntled ex-employee took remote

control over sewer valves and managed to flood a hotel, a park and a river with a million liters of sewage.

Researchers have also demonstrated the vulnerability of national power networks to cyber attacks [5], [15] as

a result of the increased connectivity necessary to build a smart grid. Work [5] also discuses cyber attacks on

the autonomous control systems of gas pipeline and other power utilities.

1.1 Framework

Motivated by these accidental and orchestrated failures of autonomous systems, we want to build a resilience

framework to guarantee the safety of autonomous systems in the face of such malfunctions. We start by
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defining a precise malfunction model encompassing all aforementioned scenarios. We introduce the notion

of partial loss of control authority over actuators where some of the actuators of an autonomous system

start producing uncontrolled and thus possibly undesirable inputs within their full range of actuation. These

actuators do not obey to the controller’s commands anymore. Such a failure can be caused, for instance, by a

software bug as in the ISS example [13], by a loss of pressure in hydraulic powered control surfaces of an

aircraft [9], [14] or by a cyber attack [2], [5], [6], [15].

After an autonomous system lost control authority over some of its actuators, the malfunctioning system

must first identify these faulty actuators. This is the role of the Fault Detection and Isolation (FDI) module

popularized by the field of fault-tolerant control [16], [17]. Following [16], we assume that sensors monitor

in real-time the outputs of each actuator of the system. Then, a model-based FDI module compares each

actuator’s output with its nominal prediction to assess whether a fault occurred as in [16].

Once the malfunctioning actuators are identified, the sensors used by the FDI module still play a crucial

role by providing the controller with real-time measurements of the malfunctioning actuators’ outputs.

With this information, an adaptive controller will use the remaining controlled actuators to counteract the

deleterious effect of the malfunctioning actuators, as in the aforementioned ISS example [13]. This approach

is only feasible if the system possesses sufficient control redundancy. Since duplicating actuators is expensive,

control redundancy is usually restricted to safety critical systems like aircraft [16] or spacecraft [18]. This

trade-off between redundancy and cost has been investigated by NASA during the space race in order to

provide guidance for spacecraft design [19]. More specifically, [19] provides a method to calculate how much

redundancy is necessary in a subsystem by minimizing the total cost of the subsystem plus the expected loss

incurred in case of failure.

Classically, the design of controllers operating in off-nominal conditions has relied on robust control

theory [20] and on adaptive control theory [21]. Combining approaches from these two theories, the field of

fault-tolerant control provides tools to study various actuator failures [17]. However, partial loss of control

authority over actuators has so far largely escaped treatment by any of these three control theories. We will

review related works of robust, adaptive and fault-tolerant control in Section 2.1 and discuss their limitations

when applied to our malfunction of interest. Instead of arising from these classical control theories, the

most useful contributions to this dissertation came from the fields of differential games theory [22], [23] and

perturbed reachability analysis [24] which we will discuss in Section 2.3.

Let us introduce some notation to describe the framework employed throughout this dissertation. We

study a nominal control system whose state at time t is denoted by x(t) and follows dynamics

ẋ(t) = f
(
x(t), ū(t)

)
, x(0) = x0, ū(t) ∈ Ū for all t ≥ 0. (1.1)

State x starts from x0 at t = 0 and is then steered through function f by nominal input ū from the controller.

The actuators of system (1.1) all operate within some range that might be dictated, for instance, by energy

or mechanical constraints. These constraints are enforced on the inputs of system (1.1) through the inclusion

ū(t) ∈ Ū .
After a partial loss of control authority over actuators, nominal input signal ū is split in two parts:

controlled input signal u from the controlled actuators and undesirable input signal w from the malfunctioning

actuators. The dynamics of the malfunctioning control system are described by the same function f as in

(1.1), but the input ū is now constituted of two parts u and w, so that (1.1) becomes

ẋ(t) = f
(
x(t),

[
u(t)w(t)

] )
, x(0) = x0, u(t) ∈ U , w(t) ∈ W for all t ≥ 0. (1.2)
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The same way as ū is split into u and w, set Ū is split into U and W to separate the controlled actuators

from the malfunctioning ones. Then, the input constraints on the malfunctioning dynamics (1.2) are enforced

through the inclusions u(t) ∈ U and w(t) ∈ W. The loss of control authority is clearly illustrated by the fact

that the controller chooses ū(t) in (1.1), but it chooses only u(t) in (1.2), while the undesirable input w(t) is

determined by other uncontrolled factors.

As discussed previously, the sensors of the FDI module provide real-time measurements of the malfunc-

tioning actuators’ outputs w(t) to the controller, which is able to modify its command u(t) to adapt in

a reactive fashion to w(t). This dependency can be written simply as u(t) = u
(
t, w(t)

)
. Control systems

usually possess additional sensors like GPS, cameras, radars, etc, to measure at least partially the state x(t).

In this dissertation we assume that the controller has perfect knowledge of the state, which translates to

u(t) = u
(
t, x(t), w(t)

)
. If the controller is also able to store in memory the history of the state x([0, t]) and

of the undesirable input w([0, t]), this additional knowledge might be beneficial for performance. Then, we

would write u(t) = u
(
t, x([0, t]), w([0, t])

)
. Since x(t) and w(t) are acquired through sensors, in practice they

are received by the controller with some delay [25]–[27]. This setting will be investigated in Chapter 8 where

we remove the simplifying assumption of instantaneous knowledge of x(t) and w(t) by the controller.

Now that the investigation framework is clearly stated, let us define our problems of interest.

1.2 Problems of interest

Because of a loss of control authority over some actuators, malfunctioning system (1.2) has less actuation

than nominal system (1.1), and hence system (1.2) might not be able to complete the nominal mission

assigned to system (1.1). To assess the remaining capabilities of the malfunctioning system we will first

consider simple missions of target reachability. Let T be a target set that we assume to be reachable by the

nominal system (1.1). Indeed, if T is not reachable by the nominal system, then it cannot be reached by

malfunctioning system (1.2) because it has the same dynamics and reduced actuation. Reachability of T by

the nominal system means that there exists a control input ū driving the state of (1.1) from x0 to x(TN ) ∈ T
in some time TN ≥ 0.

For malfunctioning system (1.2), we need to introduce a slightly different notion of reachability. Indeed,

w(t) is uncontrolled and possibly unpredictable, hence reachability by system (1.2) should not depend on w.

We say that target T is resiliently reachable by system (1.2) if for every signal w there exists a control u

driving the state of (1.2) from x0 to x(TM ) ∈ T in some time TM ≥ 0. The main obstacle preventing resilient

reachability is the actuation constraint u(t) ∈ U that might prevent the controller from overcoming some

undesirable inputs w and adequately steering the state to T . This leads us to our first problem of interest.

Problem 1: Under what conditions is a target T resiliently reachable by malfunctioning system (1.2)?

We first tackle this question for systems with energy bounded inputs in Chapters 3 and 4, and for systems

with amplitude bounded inputs in Chapters 5 and 7. For these two types of systems, we employ drastically

different approaches. We rely on perturbed reachability theory [24] for systems with inputs of bounded energy,

while we build on differential games theory [23] for systems with inputs of bounded amplitude.

Solving Problem 1 gives a method to study the remaining capabilities of a system that has suffered a

partial loss of control authority over its actuators. When studying safety-critical systems, such a post-failure

analysis should conclude that the malfunctioning system is still capable of completing its nominal mission.

Therefore, safety-critical systems must be designed resilient to a partial loss of control authority over their

actuators. This train of thoughts leads us to our second problem of interest.
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Problem 2: How to design a system that can resiliently complete its mission despite a loss of control

authority over any one of its actuators?

Building on the resilient reachability conditions of Chapter 3, we address Problem 2 in Chapter 4 for

driftless linear systems with inputs of bounded energy. We are then able to design resilient systems capable

of completing their nominal mission despite a partial loss of control authority over their actuators.

However, resilience only requires that target set T remains reachable by malfunctioning system (1.2) in

some finite time TM as discussed before Problem 1. Resilience does not place any constraint on TM other

than being finite. After an extremely damaging loss of control, TM could be several orders of magnitude

larger than TN , the nominal reach time for system (1.1). Many applications have some time constraints that

would prevent mission completion if TM was too large. For instance, drones have a limited flight time due to

their battery [28] and spacecraft have limited quantities of propellant on board [12], which prevent mission

extension after some fixed timeframe.

Our third objective is then to estimate the maximal time penalty caused by a partial loss of control

authority. More specifically, we introduce the nominal reach time T ∗
N as the fastest time in which nominal

system (1.1) can reach target set T . Similarly, we define the malfunctioning reach time T ∗
M as the fastest

time in which malfunctioning system (1.2) can reach target set T when w is chosen to make that time the

longest. Then, we can quantify the resilience of system (1.1) by studying the ratio T ∗
N/T

∗
M . The larger this

ratio is, the less impact the loss of control authority has on system (1.1) and hence the more resilient it is.

To quantify the resilience of system (1.1) independently of its mission, we will define quantitative resilience

as the maximal ratio T ∗
N/T

∗
M over all targets T .

The only thing left is to solve this optimization problem of the ratios of reach times. However, these

ratios are nonlinear in their dependency on target sets T making this optimization non-trivial. Additionally,

our definitions of T ∗
N and T ∗

M introduce nested optimization problems rendering quantitative resilience an

extremely difficult quantity to calculate. Our third problem of interest is then to find a method of solving

these nonlinearly nested optimizations.

Problem 3: How to calculate efficiently the quantitative resilience of control systems?

In Chapter 5 we establish a method to solve Problem 3 for driftless linear systems by relying on the novel

Maximax Minimax Quotient Theorem that we prove in Chapter 6. However, this approach does not extend

to the case of linear systems with drift, mainly due to the lack of analytical expression for the minimal reach

times T ∗
N and T ∗

M of these systems [29], [30]. An exact calculation of quantitative resilience being impossible,

Chapter 7 instead establishes bounds on the nominal and malfunctioning reach times T ∗
N and T ∗

M in order to

bound the quantitative resilience of linear systems with drift.

Problems 1, 2 and 3 are at the core of the resilience theory established in this dissertation. The solutions

of these foundational problems derived between Chapters 3 and 7 open the door for numerous extensions of

resilience theory, which leads to our final problem of interest.

Problem 4: How to extend the scope of resilience theory?

We investigate Problem 4 in Chapters 8 to 10 where we explore a few of the possible extensions of resilience

theory. More specifically, in Chapter 8 we detail how to adapt resilience when removing the assumption of

instantaneous knowledge of w(t) by controller u(t). We also extend our theory to more complex mission

scenarios than resilient reachability by studying resilient trajectory tracking. In Chapter 9, we further extend

the scope of our theory to study the resilience of linear networks. Despite most of the work of this dissertation
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concerning linear dynamics, we show in Chapter 10 that resilience theory can be extended to nonlinear

systems such as spacecraft dynamics. We have now stated the four problems of interest to be studied in this

dissertation. Let us give an overview of the remainder of this work.

1.3 Overview

Following Problems 1 to 4, the contributions of this dissertation are fourfold and summarized as follows.

1. We establish analytical conditions to assess whether autonomous systems enduring a partial loss of

control authority over their actuators remain capable of reaching a given target despite any undesirable

input generated by the malfunctioning actuators.

2. We derive design criteria for autonomous systems to be resilient to the loss of control authority over

any one of their actuators.

3. We quantify the impact of such a malfunction by comparing the optimal reach times of autonomous

systems before and after a partial loss of control authority over their actuators.

4. We further extend the scope of resilience theory by establishing conditions for resilient trajectory

tracking, resilience in the presence of actuation delay, resilience of networks and for the resilience of

nonlinear systems.

These contributions are connected to our problems of interest discussed at length in Section 1.2, where we

also mention which chapters of this dissertation address each problem. Similarly, each of these contributions

is realized in the chapters tackling the associated problem of interest.

This dissertation is composed of the work accomplished between Fall 2019 and Spring 2023 and relies on

four of our conference papers [31]–[34], our four journal papers [35]–[38] and two yet unpublished works [39],

[40]. During these four years we also published another conference paper [4] but it does not fit within the

framework of this dissertation. The remainder of this work is divided into ten chapters organized as follows.

• Chapter 2 is a literature review of the various fields related to resilience theory. We will study how

resilience fits within the wider approaches of robust, adaptive and fault-tolerant control. We will also

compare our theory with other notions of resilience found in the literature. Finally, we will introduce

previous works studying reachability, controllability, differential games theory, and time optimal linear

control upon which resilience theory is built.

• Chapter 3 is adapted from our earliest work on resilience [31] to address Problem 1. In this chapter we

will establish the foundational resilience theory for linear systems with bounded energy. We will build

on the perturbed reachability condition of [24] by transforming it into a usable form. We will then use

this reworked condition to derive simple analytical conditions for the resilient reachability of driftless

linear systems and to understand how their resilient reachability capabilities evolves with time.

• Chapter 4 relies on our work [35] to investigate the design of resilient driftless linear systems with

bounded energy and hence solve Problem 2. In this chapter we will build on the resilient reachability

condition of Chapter 3 to calculate the minimal degree of overactuation necessary for a system to be

resilient to the loss of control over any single one of its actuators. Additionally, we will synthesize a

control law achieving resilient reachability for linear systems.
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• Chapter 5 switches gear to study the resilience of linear systems with component bounded inputs and

to introduce the notion of quantitative resilience. This chapter is adapted from our published works

[32], [38] and will use linear optimal control to design an efficient method to calculate the quantitative

resilience of driftless linear systems. This chapter is then geared toward addressing Problem 3.

• Chapter 6 describes the proof of the Maximax Minimax Quotient Theorem. This optimization result is

in fact needed to calculate the quantitative resilience of driftless systems and used in Chapter 5. The

complete proof of this result was published in our work [36] and relies on a geometrical approach of

input selection. Before solving said optimization problem we will prove the existence of a solution with

the Berge Maximum theorem [1].

• Chapter 7 extends resilience theory to general linear systems with drift by addressing Problems 1 and

3. This chapter is drawn from our works [33], [37] which rely on differential games and linear control

theories to establish necessary and sufficient conditions for the resilience of general linear systems. We

will also calculate analytical bounds on the quantitative resilience of these systems.

• Chapter 8 represents the first step towards Problem 4 and is taken from our work [39]. We will start this

chapter by investigating more complex mission scenarios than resilient reachability by deriving sufficient

conditions for resilient trajectory tracking. Then, we will we extend resilience theory to linear systems

with actuation delays to remove the assumption of instantaneous knowledge of the undesirable inputs

by the controller. Finally, we will derive a sufficient resilience condition for systems with nonlinear

dynamics.

• Chapter 9 extends resilience analysis to linear networks suffering partial loss of control authority. We

will mostly study how an unresilient subsystem suffering from a partial loss of control authority can

affect the stabilizability of the rest of the network. This chapter represents the current state of our

work and has not been published yet.

• Chapter 10 investigates the resilience of an orbital inspection mission to the loss of control authority

over a thruster of the inspecting spacecraft. This chapter is drawn from our works [34], [39] and

contributes to Problem 4 by extending resilience theory to the nonlinear dynamics of a spacecraft. For

these nonlinear dynamics we will also build a resilient trajectory tracking controller with guaranteed

performance.

• Finally, Chapter 11 contains a summary of this dissertation as well as the main conclusions. It also

gives recommendations to be considered for future research on the topic of resilience.

This concludes the introduction of this dissertation. We will now proceed with an extensive literature

review of the various fields related to resilience theory.
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Chapter 2

Literature Review

In this chapter, we proceed to an extensive overview of previous works in relation with our dissertation. Since

resilience theory studies how well autonomous systems can endure a partial loss of control authority over their

actuators, we need to compare resilience with the classical control theories studying changing or unknown

dynamics, most notably robust and adaptive control. We will also compare our resilience theory within the

resilience literature. Finally, since reachability is central in this dissertation, we review the approaches of

robust control, optimal control and differential games to the topic of reachability analysis.

The remainder of this chapter is organized as follows. In Section 2.1, we will study how resilience compares

with the well-established fields of robust, adaptive and fault-tolerant control. In Section 2.2, we compare our

theory with other notions of resilience found in the literature. Finally, Section 2.3 introduces previous works

studying various notions of reachability as this is a central topic of our dissertation.

2.1 Control theories for malfunctioning systems

In Chapter 1, we introduced the notion of resilience of autonomous systems to a partial loss of control

authority over their actuators. Following such a malfunction, the faulty actuators produce uncontrolled and

possibly undesirable inputs, which can severely hinder the capabilities of the system. Classically, changing or

unknown dynamics are studied through robust and adaptive control theories grouped together under the

wider umbrella of fault-tolerant theory. We will then review these theories and see how resilience fits within

their framework. We start by reviewing the basis of robust control theory.

2.1.1 Robust control theory

A control system with guaranteed performance despite the presence of unmodeled and unknown disturbance is

characterized as robust to these uncertainties [20]. Robust control methods are designed to function properly

provided that uncertain parameters or disturbances are found within some typically compact set. To illustrate

how robust theory works, let us introduce control system (2.1), whose state x follows dynamics f and is

steered by control input u and unknown disturbance v. Then,

ẋ(t) = f
(
x(t), u(t), v(t)

)
, x(0) = x0, u(t) ∈ U , v(t) ∈ V for all t ≥ 0, (2.1)
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where V is a bounded set. We can now define robust reachability, also called strong reachability in [24], [41],

reachability under uncertain input disturbance in [42] or minimax reachability in [43]. A target T is robustly

reachable by system (2.1) if there exists an admissible control signal u ∈ F(U) such that for all disturbance

signal v ∈ F(V) the state of system (2.1) reaches target T in some time T , i.e., x(T ) ∈ T .

The main strength of this approach is the absence of assumptions restricting disturbance v other than its

boundedness v(t) ∈ V [44]. The disturbance input v can be stochastic, bang-bang, constant, or anything in

between, as long as it remains in V , a robust controller does not need to know its structure to drive the state

to the target. However, this strength is also the main weakness of robust control. Indeed, the utter lack of

knowledge concerning v forces robust controller u to be overly conservative. In order to obtain meaningful

guarantees for robust reachability, the constraint set V must be sufficiently small. Hence, we should think of

v as modeling small perturbations not accounted for in the dynamics f [44].

Let us now see how resilience compares with robust control. If we label as disturbances the uncontrolled

inputs w produced by the malfunctioning actuators of a system enduring a partial loss of control authority

like (1.2), then resilience theory would fit in the framework of robust control [20], [41], [42]. Indeed, note

the similarity between the dynamics of malfunctioning system (1.2) and that of system (2.1). We will now

compare robust reachability with resilient reachability as defined above Problem 1. Both of these concepts of

reachability ask for a controller u to drive the state x to target T despite some uncontrolled input v or w.

However, the crucial distinction between robust and resilient reachability lies in the order of the quantifiers.

Robust reachability requires a single controller u to work for any disturbance v, while resilient reachability

allows the controller u to depend on the uncontrolled input w. This dependency is justified by the assumption

of instantaneous knowledge of w(t) by u(t) made in Section 1.1. Since the robust control setting treats v as

unknown, it has access to much less information than a resilient controller allowed to adapt to the undesirable

inputs w. Because of this crucial difference in information setting a resilient controller performs much better

than an overly conservative robust controller, as we will later demonstrate in Section 4.6.2.

Another caveat hindering the application of robust control to a system enduring a partial loss of control

authority over its actuators, is the magnitude of the undesirable inputs w. Indeed, these inputs are produced

by actuators of the system and hence they can have the same magnitude as the controlled inputs. However,

robust control needs the undesirable inputs to be significantly smaller than the controls to provide meaningful

results [44]. Therefore, even if robust control methods can be applied to study systems enduring a partial

loss of control authority over their actuators, these methods are too conservative to produce the desired

reachability guarantees as they do not take advantage of the information available on the undesirable inputs.

We will now investigate whether the rival theory of adaptive control is more appropriate to study a loss of

control authority over actuators.

2.1.2 Adaptive control theory

A controller that is autonomously modifying its parameters and structure in order to improve its performance

is characterized as adaptive [21], [44]. These modifications aim at either adapting to time-varying parameters

of the system or at learning the value of some initially uncertain system parameters. Adaptive control is

different from robust control in that it does not need a priori information about the bounds on these uncertain

or time-varying parameters [44]. Instead of having a single and conservative robust controller, adaptive

control is concerned with how to change the control law itself to be better suited to changed or uncertain

system dynamics.

This adaptation of the control law to time-varying parameters is present in the resilience framework as a
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resilient controller is allowed to modify its response when the undesirable inputs change. Hence, resilience

theory is more closely affiliated to adaptive control than to robust theory. However, a straightforward

application of adaptive control methods to a system enduring a partial loss of control authority over its

actuators is likely to fail. Indeed, adaptive control tries to estimate unknown parameters before they have

time to change significantly [21], which may not be possible for uncontrolled inputs that might operate on

faster timescales. This timescale issue is one of the main limitations of adaptive control [21]. Such a situation

would typically prevent convergence of the estimators and lead to mediocre adaptive control performance

[44]. This apparent limitation of adaptive control did not discourage researchers who found ways of applying

adaptive methods to compensate actuator failures [45], [46] under the wider umbrella of fault-tolerant theory.

Now that we have given some background on robust and adaptive control theories, let us see how they are

implemented in the framework of actuator malfunctions, which is of particular interest to this dissertation.

2.1.3 Fault-tolerant theory

A control system capable of automatically preserving its stability and achieving acceptable performance

despite component malfunctions is called a fault-tolerant control system (FTCS) as defined in [14]. These

systems can be separated into two broad categories: passive and active FTCS [14], [17].

• In a passive FTCS all failure modes are known a priori and are all implemented together beforehand.

Passive FTCS usually rely on robust control theory with a single controller operating both before

and after any failure [46]. This method has the advantage of not requiring any information about the

failure [17]. Then, its implementation does not require a fault detection and isolation (FDI) module,

which makes it very appealing in practice [14]. Additionally, the controller being unique, there is no

switching, adaptation period or transient during which performance could be unsafe as for active FTCS

[14]. However, the main drawback of this approach is its conservativeness as the controller is built for

the worst-case scenario and becomes more conservative as the number of considered fault scenarios

increases [14].

• An active FTCS reacts to a detected fault and reconfigures its controller to adapt to the changed

dynamics. This approach relies on adaptive control theory and switched systems to provide better

performance than a passive FTCS [46]. Indeed, the adaptive controller will be designed specifically to

perform well in a precise setting [14]. However, an active FTCS requires fast and correct diagnostic

of the malfunction in order to adapt adequately. The necessary FDI module increases the design and

implementation complexities of active FTCS. Another drawback to this approach is the need to establish

stability guarantees for the transient period occurring after the malfunction, during the fault-diagnostic,

and before the switching to the updated controller [46].

As discussed during the overview of robust control in Section 2.1.1, a loss of control authority generates

undesirable inputs of magnitude too large to be meaningfully handled by a passive FTCS. We will then focus

on active approaches. Indeed, this dissertation belongs to the framework of active fault-tolerant control since

our approach relies on the detection of actuator malfunctions and switches to a controller specifically designed

to counteract said actuator failure. Actuator failures as a whole are too broad to be studied together and are

then usually subdivided into three main categories detailed in [17], [18].

• An actuator suffering from a partial loss of effectiveness is operating with reduced capability compared

to its nominal range, but remains under the controller’s authority [10], [14], [18], [46], [47]. For instance,
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a leak in the hydraulic system responsible for the motion of an actuator would cause a pressure loss

effectively reducing the range of motion of said actuator [14]. To handle loss of actuator effectiveness,

the work [47] establishes a new adaptive control allocation method that does not require unrealistic

persistence of excitation like classical adaptive control, but requires actuator redundancies. When no

actuator redundancy is available, work [18] devises a fault-tolerant scheme to compensate for the partial

loss of actuator effectiveness in a spacecraft.

• A locked-in-place actuator is an extreme form of partial loss of effectiveness, as this actuator is stuck

or jammed at a specific position and is then producing a constant output onward from a possibly

unknown failure time [10], [46], [48]–[50]. A specific case of lock-in-place is handover or runaway when

the actuator is stuck at the lower or upper end of its output range [17]. A typical example of this

category of actuator failure would be a robot arm with a frozen joint [49]. To handle actuators locking

in place, the work [48] relies on adaptive control to compensate uncertainties with adaptive tuning of

controller parameters based on system response. If the output value of the locked-in-place actuator is

known, one can evaluate the reachable space of the system to study its remaining capabilities as in [50].

• An actuator suffering from a float failure has no effect over the system performance [16], [46]. For

instance, after a rupture of the control line, an aircraft elevon might be flapping in the wind instead of

being actively controlled [16]. This elevon should then be removed from use by the control allocator.

The works [51], [52] investigated float failures under the form of completely disabled spacecraft thrusters

to guarantee the safety of orbital rendezvous.

Some works adopt a more generic malfunction model allowing to study several of the actuator failure

categories together. For instance, the work [10] develops an adaptive control approach to stabilize hypersonic

reentry vehicles facing a combination of both partial loss of effectiveness and locked-in-place actuators.

The work [46] studies a combination of the three categories of actuator failures and establishes transient

performance guarantees after actuator failures using direct adaptive control.

However, after a loss of control authority over an actuator, this malfunctioning actuator retains the

capability to produce the same range of outputs as nominally but it does not follow the controller’s commands

anymore. This malfunction is then not covered by any of the three categories of actuator failures discussed

above, hence preventing the use of these previous works. Another factor preventing the extension of existing

fault-tolerant approaches to resilience theory is the specificity of the application of each work. Indeed, most

of the works introduced above design fault-tolerant schemes specifically tailored for their application of

interest like hypersonic reentry vehicles [10], supersonic fighter jet [16], hydraulic driven control surfaces [14],

kinematically redundant manipulators [49], or steam generators [50]. The methods employed in these papers

are usually too specific to be generalized to other applications with different dynamics.

We have now reviewed the three main control theories that most closely relate to the framework studied

in this dissertation. Despite sharing some common traits with robust, adaptive and fault-tolerant control

theories, resilience is better suited than these classical theories to investigate autonomous systems enduring a

partial loss of control authority over their actuators. However, this dissertation is not the first work in the

literature to study the resilience of control systems. We will then review previous approaches.
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2.2 Resilience of control systems

In this section, we provide an overview of previous works who studied and quantified the resilience of control

systems. We will investigate how these works compare to the framework of this dissertation.

Loss of control authority over actuators was first introduced in the work [53] which investigated how to

guarantee safe operation of a control system in which some components are no longer under the controller’s

authority. However, it only studied extremely simple driftless discrete-time dynamics and its approach took

full advantage of the discrete state and action spaces, hence preventing extensions to more complex continuous

dynamics.

The work [6] studies control system under sensor attacks in a framework very similar to ours, except that

all inputs are unbounded. Their goal is one of observability in reconstructing the state evolution based on

corrupt sensor measurements. They prove that this reconstruction is only possible if less than half of the

sensors are attacked. Since our problem of interest is more aligned with controllability than observability, we

would want to transform their results through duality. However, because of the attacker’s signal e bringing

nonlinearity to the output y of the linear system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) + e(t),

the dual of this perturbed system is not clearly defined, what to do of e(t)? Additionally, the unboundedness

of the inputs prevents to extend this theory to our framework. As noticed in the work [54], when bounding

the initially unbounded inputs of an elegant control theory, the results are disappointing.

Instead of quantifying resilience with optimal reach times as in this dissertation, the work [55] chooses to

quantify resilience with the minimal energy needed to reach a target. Work [55] actually extends the approach

of the earlier work [15] from linear systems to nonlinear ones using the Koopman theory. An ideological

difference between these works and our dissertation is their view of resilience as the capability of the system

to bounce back after a malfunction. Then, the two factors contributing to resilience in [15], [55] are the

capabilities of the controller to detect quickly all malfunction occurrences and to return the perturbed state

to its nominal value. Hence, works [15], [55] quantify resilience as the observability and controllability of the

system. Thanks to the observability and controllability Gramian matrices, these notions are much easier to

quantify than optimal reach times as discussed in Sections 2.3.2 and 2.3.3. However, we believe our setting to

be more meaningful as it is not restricted to inputs with bounded energy and reach times provide a more

practical information than input energy.

Previous work have established notions of quantitative resilience for different fields of applications. In

water infrastructure systems, the work [56] reviews and compares twenty-one previously established resilience

metrics designed for water resource or distribution systems. A thorough comparison lead the authors of [56]

to provide improvement guidelines for resilience metric specifically designed for water infrastructure systems.

Because of their highly specific framework, these metrics do not apply to the generic control systems under

study in this dissertation.

After the accident at the Fukushima nuclear power plant, nuclear safety guidelines all around the world

were reviewed and new methods were established to assess and guarantee safety. The work [57] derives a

quantitative resilience metric based on a statistical study of all the abnormal behaviors of nuclear power

plants reported to the Korea Institute of Nuclear Safety. For each incident, resilience is based on an evaluation

of factors describing the plant and its operating crew such as anticipation, adaptation, training, learning,

decision making, and so on [57]. This framework is extremely specific to the problem of nuclear power plant
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safety and cannot be extended to general systems as this dissertation aims to do.

On the contrary to both previous works, [58] is too generic in its concept of resilience. Indeed, work [58]

uses systems engineering tools to define resilience as the ratio ‘recovery over loss’ describing how much a

system bounced back after a malfunction. This ratio is somewhat similar to the quantitative resilience metric

introduced above Problem 3, but the desire of the authors of [58] to remain general prevents application to

the control problems studied in this dissertation.

To the best of the author’s knowledge, we have reviewed all the previous works studying resilience of

control systems and we concluded that the problems this dissertation set to solve cannot be addressed with

previous approaches. We will now proceed to a review of different works pertaining to reachability analysis

as this topic plays a central role in this dissertation.

2.3 Reachability analysis

In this section we review numerous works all related to reachability analysis, but belonging to different fields

among which are robust, linear, and optimal control theories along with differential games theory and delayed

systems. We start by discussing the problem of reachability of a controlled linear system.

2.3.1 Reachability

While computation of a reachable set is a classical problem in control theory [59], [60], it remains a

computationally intensive problem usually addressed by under and over-approximations. The work [61]

describes an algorithm to compute the reachable set of linear time-invariant systems requiring only Minkowski

additions. The complexity of these additions is heavily dependent on the chosen set representation and

[61] argues to select zonotopes for ease of calculation. Additionally, these zonotope additions are easily

implemented on MATLAB with the dedicated reachability analysis toolbox [62]. However, zonotopes are

not the only efficient set representation to perform reachability analysis. The work [63] instead focused

on providing polyhedral approximations of the reachable set of a linear system, while [64] chose ellipsoidal

representations. Research has also investigated how to obtain the optimal inputs responsible for the states on

the boundary of the reachable set, using once again zonotopic representation [65].

In the resilience framework of this dissertation, we are also interested by the reachable set of the

malfunctioning system (1.2), where the control u tries to steer the state to some target despite the worst

undesirable input w trying to prevent this steering. In this setting, we cannot employ directly the reachability

methods discussed above as they rely on full knowledge of system state and inputs. The most widely studied

notion of reachability for systems with perturbations is strong reachability [24] which tackles the problem of

how to reach a target set with a control input that works for all possible undesirable inputs. This approach

relates to the field of robust control, and has been studied by, e.g., [41]–[43], [66]. The work [43] considers

the worst case perturbation and try to obtain guaranteed performance for trajectory tracking by deriving

conditions for a robust controller to maintain trajectory within a small distance of a target trajectory despite

all admissible perturbation. Similarly, [42] establish ellipsoidal inner and outer approximations of robustly

reachable sets obtained from the Hamilton-Jacobi-Bellman equation. On a similar note, the work [66] aims

at computing the set of initial states from which some target is robustly reachable. Nonetheless, these

robust methods are conservative and often produce meaningful results only when the amount of undesirable

disturbances in the system is small [44]. Therefore, discussion of reachability in the face of loss of control

authority, where the capabilities of the uncontrolled actuators may equal or exceed the capabilities of the
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remaining control actuators, calls for a different type of reachability to be discussed in Sections 2.3.3 and

2.3.4.

2.3.2 Time optimal linear control

To quantify the resilience of autonomous systems, we decided to compare the minimal time to reach a target

for the nominal and malfunctioning dynamics. Then, the first step in addressing Problem 3 for linear dynamics

is to calculate the minimal time for the nominal system to reach a target. This topic was of particular interest

during the 1950’s as discussed in the introduction of [67]. To be more specific, these works are concerned

with calculating

T ∗
N (x0) := inf

u∈F(U)

{
T ≥ 0 : x(T ) = 0, with x(0) = x0, and ẋ(t) = Ax(t) +Bu(t) for all t ≥ 0

}
, (2.2)

and U = [−1, 1]m, with A ∈ Rn×n and B ∈ Rn×m constant matrices. The work [67] establishes that T ∗
N

exists and that the optimal input u∗ argument of the optimization (2.2) is unique and bang-bang for normal

and Hurwitz linear systems. The notion of normality is related to the structure of the reachable set and

directly implies uniqueness of the time-optimal inputs [68].

However, the problem of synthesizing u∗ in a general setting was not solved until the work [69], which

derives an iterative method converging to the optimal control. Shortly after, work [70] establishes a method

of successive approximations of u∗ designed for the engineers in need of a practical process. Instead of solving

directly the minimal time problem (2.2), work [70] solves recursively the easier problem of minimizing the

norm of the final state at a given time. The smallest of these times where the norm of the state is null is the

minimal stabilizing time T ∗
N . The same year [71] derives another algorithmic way of computing u∗, but based

on geometrical intuition and hyperplanes.

Then, the work [72] extended the bang-bang principle of [67] to systems with nonlinear control but linear

internal dynamics. More specifically, [72] established the compactness of the reachable set of dynamics

ẋ(t) = A(t)x(t) + φ(u, t) when u(t) ∈ U is compact, and A and φ are continuous. We will make good use of

this result in Proposition 11.

In the following years, [73] derives another algorithm relying on gradient descent to compute u∗ for

semilinear systems of the form ẋ(t) = A(t)x(t) +B(t)u(t) + f(t). Most of the results cited so far required the

normality of the dynamics to ensure the uniqueness of the optimal solution. That is where the work [74]

comes into play, since its algorithm to synthesize u∗ does not need normality. The profusion of numerical

methods to determine u∗ and T ∗
N is in fact due to the absence of a closed-form analytical description of these

optimal quantities as stated in the review [29].

However, most of the algorithms derived at this period are not very efficient in terms of computation.

Indeed, these gradient-based iterative methods are very sensitive to initial guess and usually exhibit poor

convergence properties. To address this issue, the more recent work [75] studies the single input case where

all the eigenvalues of A are real. In this case, work [75] determines the optimal sequence of switching times

of the bang-bang input u∗ and provides an algorithm with much better convergence properties than older

approaches. This work is then extended to linear systems with complex poles in [76].

We should mention that contemporary research is still performed on the time optimal control of linear

systems, as witnessed by the work [77] studying the case of time-optimal transfer between two non-zero states,

which had not been solved previously according to the authors. To compute T ∗
N and evaluate quantitative

resilience in Chapter 7, we will rely on the numerical methods aforementioned. In order to prove the existence
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of certain optimal controls in several instances of our dissertation, we rely on the excellent optimization book

[78]. However, calculating T ∗
N is only half of the quantitative resilience ratio. We will now review previous

work that studied the malfunctioning reach time T ∗
M as introduced before Problem 3.

2.3.3 Time optimal differential games

Let us start by giving a proper definition of the malfunctioning reach time

T ∗
M (x0) := sup

w∈F(W)

{
inf

u∈F(U)

{
T ≥ 0 : x(T ) = 0, with x(0) = x0, and ẋ(t) = Ax(t)+Bu(t)+Cw(t)

}}
, (2.3)

where U = [−1, 1]m and W = [−1, 1]p, with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn×p constant matrices.

The first approach studying this minimax optimization is the work [79], which solves the minimal time

intercept problem between a pursuer and evader of linear dynamics and single inputs. Additionally, work

[79] concludes that if we know how to solve an optimal control problem, then we can solve the associated

minimal time intercept problem. This statement was formally established as a duality theorem between

optimal control and differential games by Hájek in his work [23]. This duality result is the bedrock for the

resilience theory of linear systems established in Chapter 7 and used in subsequent chapters. Building on

Hájek’s work [23], his student continued the investigation of the equivalence between differential games and

optimal controls by extending their approach to games with fixed winning times [80] and by proving the

uniqueness of winning policies [68].

The duality theorem of [23] transforms a differential game with input sets U and W into an optimal control

problem with a single input set defined as the Minkowski difference BU ⊖ CW. This idea is independently

discovered at the same time by [81], which develops an iterative process of set additions and differences in

order to calculate the backward reachable set of a linear discrete time system with a controller uk immediately

aware of the disturbance wk. This is almost exactly the framework of this dissertation. However, the

reachability method developed in [81] is specific to discrete time dynamics and it does not have the theoretical

generality of the duality theorems of [23], which is why do not employ the approach of [81].

To compute the Minkowski difference BU ⊖CW mentioned in [23], [68], [80], [81], we will model input sets

BU and CW as zonotopes and employ the methods of [62], [82]. Minkowski difference, also called Pontryagin

difference [23], geometric set difference [81] or star-difference [68], [80] is studied in depth in the works [68],

[83], [84].

The framework of [23] opened the door to prolific analytical results in our resilience theory, but it does

not provide a way of computing T ∗
M . Similarly, the work [79] can only be used for single input linear systems,

which is too restrictive for applications. Following the intuition of [79], the solution of T ∗
M is not found in

time optimal control theory, but in the field of differential games.

The foundational theory of this field is attributed to Isaacs [22], [85] after remaining unpublished for ten

years. Building on these early results of differential games, the work [30] provides an iterative process to solve

(2.3). We will use this algorithm to calculate T ∗
M in the numerical applications of Chapter 7. However, for

the supremum and infimum of (2.3) to have solutions, the framework of [30] must assume that the controller

knows ahead of time the optimal undesirable signal w∗, which contradicts the information setting of this

dissertation. However, without this assumption, there would be no single obvious choice for u∗
(
t, w(t)

)
,

rendering T ∗
M ill-defined and certainly not time-optimal, whereas T ∗

N is time-optimal. In this case, our concept

of quantitative resilience T ∗
N/T

∗
M becomes meaningless as these two times are not comparable if only T ∗

N is

optimal.
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The work [86] states that to calculate u∗ without future knowledge of w∗ the only technique is to solve

the intractable Isaacs’s equation. Thus, the paper [86] derives only suboptimal solutions and concludes that

its practical contribution is minimal. Instead, we follow [30] where the inputs u∗ and w∗ are both chosen

to make the transfer from x0 to 0 time-optimal in the sense of (2.3). The controller knows that w∗ will

be chosen to make T ∗
M the longest. Thus, u∗ is chosen to react optimally to this worst undesirable input.

Then, w∗ is chosen, and to make T ∗
M the longest, it is the same as the controller had predicted. Hence, from

an outside perspective it looks as if the controller knew w∗ in advance, as reflected by (2.3). This type of

strategy in game theory is called Stakelberg optimal [87].

While not referring to it as resilient reachability, [88] studied this same framework but focused on

developing a numerical method to compute reachable sets in a differential game setting by solving the

Hamilton-Jacobi-Isaacs partial differential equation. Compared to the analytical treatment of resilient

reachability proposed in this dissertation, the algorithm of [88] does not provide any insight in the reasons

why a target set is resiliently reachable or not. Because such a knowledge is necessary to design resilient

systems and solve Problem 2, we do not exploit the numerical approach of [88].

2.3.4 Max-min controllability

In parallel with the development of differential games, control theory also investigated the same problem, but

under the name of perturbed reachability or max-min controllability. These works distinguish themselves

from the robust control approaches in that the control input is allowed to depend on the disturbance, as in

our resilience setting.

The first of these works is [24] which transformed the problem of resilient reachability into a minimax

formula assessing whether a target set is reachable. This transformation required the use of topological dual

spaces and the resulting reachability condition is highly abstract, lack intuition, and is difficult to compute,

as we will notice in Chapter 3. Indeed, our approach to resilient reachability with inputs of bounded energy

heavily draws from the work [24] and mostly consists in simplifying the reachability condition into a usable

form.

Inspired by differential games, the work [89] studied a linear system with dual controls, which is essentially

a two-player game. This system is called max-min controllable if after one player announces its control input

for some time interval, the other player can devise an input to bring the state to the origin. The same authors

further develop this approach in [90] and obtain elegant max-min controllability conditions very similar to

the controllability condition of Kalman [91]. However, the unbounded inputs of [89], [90] prevent a wider use

of these works. To generalize their approach, the work [54] bounded the admissible inputs and sadly showed

that in this case the max-min controllability conditions become highly abstract and difficult to compute.

The works discussed here and in Section 2.3.3 assume that the controller has either immediate knowledge of

his opponent’s input following the ‘snap decision rule’ of [23], or the controller has advanced knowledge of the

opponent’s strategy as in [30], [89], [90]. While the differential games framework is particularly well adapted

for resilience, the undesirable inputs generated by the malfunctioning actuators are not necessarily adversarial

or rational and hence they cannot be anticipated in general. Additionally, even the immediate knowledge

assumption is not realistic due to sensors and actuators delays, on top of the necessary computational time

for the controller. We will then discuss the problem of reachability for systems with actuation delays.
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2.3.5 Reachability of delayed systems

In real-world applications, sensors and actuators do not operate instantly. There is a delay between the

time when the command signal is received by the actuator and the time when the commanded output is

actually produced. This transient was mentioned in the Fault Detection and Isolation (FDI) module design

of [16]. This transient is also studied for UAV propellers, as they do not respond immediately to commands

as illustrated in the experimental work of [92]. Similarly, spacecraft thrusters operate with an actuation delay

[26], [27].

On the other hand, the delay created by sensors prevents the controller from acquiring immediate

knowledge of the malfunctioning input. If this delay is not taken into account in the construction of the

controller, the latter might be destabilizing the system. For instance, consider a linear controller operating in

phase opposition with the pendulum it is supposed to stabilize. Such a controller would maintain or amplify

the oscillations of the pendulum. To study actuation delays, the extensive literature review [25] recommends

the Artstein predictor [93]. This predictor estimates the state x(t) based on the information available to the

controller at time t− τ , where τ > 0 would be its actuation delay. With this state prediction, the controller

can perform a more accurate state feedback than if it was using x(t− τ). For systems suffering from unknown

disturbances, work [94] improved the Artstein predictor by taking into account past history of the disturbance.

We will employ the predictor of [94] to design a resilient controller with actuation delay in Chapter 10.

We have now reviewed reachability literature from a variety of different fields to help us build our resilience

theory.

2.4 Summary

In this chapter we proceeded to a literature review of the main fields connected with this dissertation. We

first showed how our resilience theory differs from robust control, while being closer to the adaptive control

ideology. Our theory fits within the wide umbrella of fault-tolerant theory, but studies a specific actuator

malfunction requiring a distinct approach from existing fault-tolerant works. Then, we compared our theory

with other works on resilience differing in their frameworks and in the type of problems they can solve.

Finally, we delved into the reachability analysis literature and reviewed methods from a variety of fields

among which are perturbed reachability analysis and differential games.
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Chapter 3

Resilient Reachability for Linear

Systems with Bounded Energy

3.1 Introduction

This chapter constitutes the foundational resilience theory for linear systems with bounded energy and relies

on our work [31]. The objective of this chapter is to develop simple verification conditions determining

whether after a loss of control authority over actuators a linear system is still able to reach its initial target.

The contributions of this chapter are fourfold. First, we adopt the reachability condition of [24] and develop

it into a usable equation describing resilient reachability for linear systems with bounded energy. Second,

we tackle the specific case of driftless systems by deriving a computable condition for resilient reachability.

Third, we analyze the evolution with time of resilient reachability for driftless systems, and show that the

resilient reachability problem can be formulated as a minimax optimization of a concave-convex objective

function. Fourth, we establish several sufficient conditions to avoid solving the aforementioned minimax

optimization problem.

This chapter is organized as follows. Section 3.2 defines the problem of interest and states the related

necessary definitions. Section 3.3 introduces preliminary results obtained by [24], upon which we build our

theory. In Section 3.4 we develop a resilient reachability condition for linear systems. Section 3.5 applies this

condition to driftless systems, while Section 3.6 explores how resilient reachability of a target set evolves with

time and establishes a sufficient condition for resilient reachability. Section 3.7 illustrates our theory on two

scenarios comprising a one-dimensional system and an underwater robot.

3.2 Problem statement

We consider a system governed by the dynamics

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn,

where A ∈ Rn×n and B̄ ∈ Rn×(m+p) are constant matrices. Let T ⊆ Rn be the target set to be reached by

the system. Assume that, during its mission, the system loses authority over p of its m+ p actuators. We can

then separate the controlled inputs u ∈ F(U) from the undesirable inputs w ∈ F(W), with U = −U ⊆ Rm
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the symmetric set of admissible control signals and W = −W ⊆ Rp the symmetric set of undesirable signals.

Matrix B̄ is split accordingly into B ∈ Rn×m and C ∈ Rn×p, representing respectively the controlled and

uncontrolled actuators. The dynamics of this malfunctioning system can be written as follows

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W. (3.1)

The technical work of this chapter follows the assumptions of [24] and considers the admissible inputs to

be square integrable signals over their time domain [0, T ], i.e.,

F(U) :=
{
u ∈ L2

(
[0, T ], U

)
: ∥u∥L2

≤ 1
}
, and F(W) :=

{
w ∈ L2

(
[0, T ], W

)
: ∥w∥L2

≤ 1
}
.

The target set is T :=
{
x ∈ Rn : ∥x−xgoal∥ ≤ ε

}
= B(xgoal, ε), where xgoal ∈ Rn and ε ≥ 0. Our objective is

then to find simple conditions characterizing whether target set T is reachable in a given time by system (3.1),

regardless of the inputs w imposed by the malfunctioning actuators. We now define formally this notion of

resilient reachability.

Definition 1: Target set T is resiliently reachable at time T by system (3.1) if for any undesirable input

w ∈ F(W), there exists a control law uw ∈ F(U) such that the state of system (3.1) verifies x(T ) ∈ T .

Definition 2: Target set T is resiliently reachable by time T by system (3.1) if T is resiliently reachable at

some time t ≤ T by system (3.1).

We note the possible dependence of uw on the undesirable input w. Unlike the concept of strong reachability

[24] belonging to classical robust control [41], [66], our objective is not to a priori design a control signal that

would bring the state to the target set for any undesirable inputs, but instead to guarantee that whatever

the undesirable inputs are, one can determine a control signal dependent on the undesirable inputs to drive

the system to its goal. The intuition behind posing such a problem is that the system inputs, even if not

desirable, can often be measured. In turn, counteracting undesirable inputs is simpler when these inputs are

known and a subsequent controller can thus handle perturbations of a larger magnitude than a standard

robust controller. We can then formulate the associated problems of interest to be solved in this chapter.

Problem 5: Determine conditions under which T is resiliently reachable at time T by system (3.1).

Problem 6: Determine conditions under which T is resiliently reachable by time T by system (3.1).

This chapter focuses primarily on determining whether a target set is resiliently reachable for a particular

initial state. The problem of determining a suitable control signal uw as mentioned in Definition 1 is left to

Chapter 4. We now proceed to describe prior results that enable our work.

3.3 Preliminaries

The main result of this section is a resilient reachability condition derived from [24]. This condition will serve

as primary foundation to build our theory. The work [24] studied the abstract system

x = s+ Su+Rw, (3.2)

where x ∈ X3 is the current state, s ∈ X3 is the initial state, u ∈ X1 is the control and w ∈ X2 is the

disturbance. Maps S ∈ L
(
X1, X3

)
and R ∈ L

(
X2, X3

)
represent respectively the impacts of the controlled
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and undesirable inputs on the state. For our case of interest, we consider X1 = F(U), X2 = F(W), X3 = Rn,
and we define the following continuous linear operators:

S(u) :=

∫ T

0

eA(T−τ)Bu(τ)dτ , R(w) :=

∫ T

0

eA(T−τ)Cw(τ)dτ.

By taking s := eATx0 ∈ Rn, the solution of (3.1) can then be written as x(T ) = s + S(u) + R(w), which

is exactly (3.2). We also need to define norms on dual spaces, and for that we rely on [95]. Considering a

Banach space X and its adjoint X∗, the norm of f ∈ X∗ is defined by

∥f∗∥X∗ = sup
∥x∥X =1

{
|f∗(x)|

}
= sup

∥x∥X ≤ 1

{
|f∗(x)|

}
. (3.3)

We can now state our first result, which will serve as the basis of the work in the next sections.

Proposition 1: Target set T is resiliently reachable at time T by system (3.1) if and only if

sup
∥x∗∥X∗

3
=1

{
x∗(s− xgoal)− ∥S∗x∗∥X∗

1
+ ∥R∗x∗∥X∗

2
− ε
}
≤ 0.

Proof. Let us start from Corollary 5.8 of [24], which, while not using the same terminology, states that T is

resiliently reachable by system (3.1) at time T if and only if

sup
∥x∗∥X∗

3
=1

{
x∗(s) + inf

u∈F(U)

(
S∗x∗(u)

)
+ sup
w∈F(W)

(
R∗x∗(w)

)
− sup
y∈T

(
x∗(y)

)}
≤ 0. (3.4)

Since S∗x∗ and R∗x∗ are linear, and sets U and W are symmetric, we obtain

inf
u∈U

(
S∗x∗(u)

)
= − sup

u∈U

(
|S∗x∗(u)|

)
= −∥S∗x∗∥X∗

1
, and sup

w∈W

(
R∗x∗(w)

)
= ∥R∗x∗∥X∗

2
. (3.5)

For y ∈ T = B(xgoal, ε), we can write y = xgoal + δy with δy ∈ B(0, ε). Then, sup
∥δy∥≤ ε

(
x∗(δy)

)
=

ε sup
∥δy∥≤ 1

(
x∗(δy)

)
= ε∥x∗∥X∗

3
by linearity. Recalling that ∥x∗∥X∗

3
= 1 in (3.4), we obtain sup

∥δy∥≤ ε

(
x∗(δy)

)
= ε.

Since x∗ is linear, sup
y∈T

(
x∗(y)

)
= x∗(xgoal) + sup

∥δy∥≤ ε

(
x∗(δy)

)
= x∗(xgoal) + ε. We conclude the proof by

plugging in (3.5) into (3.4).

The reachability condition derived in Proposition 1 is highly abstract due to the dual terms and is

impractical to use for devising solutions of our two problems of interest. The following two sections aim to

develop more workable conditions.

3.4 Integral resilient reachability condition

We will now work on the simplification of Proposition 1. First, we can use the Riesz representation theorem

[95] to simplify x∗. Indeed, x∗ ∈ L
(
Rn,R

)
is bounded in Proposition 1, because ∥x∗∥X∗

3
= 1, so there exists

a unique h ∈ Rn such that x∗(·) = ⟨h, ·⟩ and ∥h∥ = ∥x∗∥X∗
3
= 1. Thus, the supremum in Proposition 1 is

over the unit sphere in Rn, i.e., for h ∈ S. With s = eATx0, the first term of the reachability condition from
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Proposition 1 can be rewritten as

x∗(s− xgoal) = ⟨h, eATx0 − xgoal⟩. (3.6)

Now we can simplify the adjoint maps S∗ and R∗ that appear in Proposition 1. Since S : F(U) −→ Rn,
its adjoint map is by definition [95] S∗ :

(
Rn
)∗ −→

(
F(U)

)∗
with S∗(x∗) := x∗ ◦ S and the associated

commutative diagram representing is illustrated in Fig. 3.1.

F(U)

S
Rn

x∗

R
S∗x∗ ∈ L

(
F(U),R

)
Figure 3.1: Commutative diagram of map S and its adjoint S∗.

Then, for any u ∈ F(U) we have

S∗x∗(u) =
(
x∗ ◦ S

)
(u) = x∗

(
S(u)

)
=
〈
h, S(u)

〉
=
〈
h,

∫ T

0

eA(T−τ)Bu(τ)dτ
〉
.

By (3.3), the norm on
(
F(U)

)∗
is defined by

∥f∥(
F(U)

)∗ := sup
∥u∥F(U) =1

{
|f(u)|

}
, with ∥u∥F(U) = ∥u∥L2

=

√∫ T

0

∥u(τ)∥2dτ.

Then, we obtain

∥S∗x∗∥L∗
2
= sup
∥u∥L2

=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Bu(τ)dτ
〉∣∣∣} , and ∥R∗x∗∥L∗

2
= sup
∥w∥L2

=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Cw(τ)dτ
〉∣∣∣} .

We can then simplify the resilient reachability condition of Proposition 1.

Theorem 1: Target set T is resiliently reachable at time T by system (3.1) if and only if

max
h∈ S

{
⟨h, eATx0 − xgoal⟩ − sup

∥u∥L2
=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Bu(τ)dτ
〉∣∣∣}+ sup

∥w∥L2
=1

{∣∣∣〈h,∫ T

0

eA(T−τ)Cw(τ)dτ
〉∣∣∣}} ≤ ε.

(3.7)

Proof. After replacing ∥S∗x∗∥L∗
2
and ∥R∗x∗∥L∗

2
in Proposition 1, the only work left is to prove that the

supremum from Proposition 1 turns into maxh∈S, which follows from the discussion preceding (3.6), S being

closed, and the function to maximize being continuous in h.

Because it directly uses matrices A, B and C instead of the adjoints of maps derived from those matrices,

the condition from Theorem 1 is more direct than the condition (3.4) we started from. Yet, computing the

two supremums on the unit sphere of L2 is a difficult task because of the infinite dimension of L2. We now

focus on driftless systems where the integrals in (3.7) can be simplified.
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3.5 Driftless systems

Driftless systems are widely studied in robotics, as their dynamics represent the kinematics constraints of the

system: numerous examples are described in [96]. For these systems matrix A equals 0, so that (3.1) becomes

ẋ(t) = Bu(t) + Cw(t), x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W. (3.8)

The removal of A enables us to distill Theorem 1 into a simpler resilient reachability condition.

Theorem 2: Target set T is resiliently reachable at time T by system (3.8) if and only if

max
h∈ S

{
⟨h, x0 − xgoal⟩ −

√
T
∥∥B⊤h

∥∥+√
T
∥∥C⊤h

∥∥} ≤ ε.

Proof. When A = 0, the leftmost term in (3.7) becomes ⟨h, x0 − xgoal⟩. We now simplify the next term by

using the Cauchy-Schwarz inequality:∣∣∣∣∣〈h,
∫ T

0

eA(T−τ)Bu(τ)dτ
〉∣∣∣∣∣ =

∣∣∣∣∣〈h,B
∫ T

0

u(τ)dτ
〉∣∣∣∣∣ =

∣∣∣∣∣〈B⊤h,

∫ T

0

u(τ)dτ
〉∣∣∣∣∣ ≤ ∥∥B⊤h

∥∥ ∥∥∥∥∥
∫ T

0

u(τ)dτ

∥∥∥∥∥ . (3.9)

The equality case happens when B⊤h and
∫ T
0
u(τ)dτ are positively collinear, i.e., when

∫ T
0
u(τ)dτ is a

nonnegative scalar multiple of B⊤h [95].

If (e1, ..., em) is the canonical basis of Rm, there exist u1, ..., um ∈ L2([0, T ],R) such that u =
∑m
i=1 uiei.

The norm of the integral of u can then be simplified with the Cauchy-Schwarz inequality:

∥∥∥∥∥
∫ T

0

u(τ)dτ

∥∥∥∥∥ =

√√√√ m∑
i=1

(∫ T

0

ui(τ)× 1 dτ

)2

≤

√√√√ m∑
i=1

(∫ T

0

u2i (τ)dτ

)(∫ T

0

12dτ

)

≤
√
T

√√√√∫ T

0

m∑
i=1

u2i (τ)dτ =
√
T∥u∥L2

.

The equality case happens when each ui is almost everywhere (in the measure-theoretical sense) collinear

with the function τ 7→ 1, i.e., when u is almost everywhere constant. Then,

sup
∥u∥L2

=1

{∣∣∣〈h,∫ T

0

Bu(τ)dτ
〉∣∣∣} ≤ ∥B⊤h∥

√
T . (3.10)

If we can find a function uh of unit norm in L2 for which the inequality in (3.10) is an equality, then

the supremum in (3.10) would be a maximum. The function uh must realize both equality cases of the

Cauchy-Schwarz inequality used previously. Hence, for h ∈ S we define the following constant function:

uh(t) :=
B⊤h√
T∥B⊤h∥ , with ∥uh(t)∥ = 1√

T
for all t ∈ [0, T ]. Thus, uh is of unit norm on L2:

∥uh∥L2
=

√∫ T

0

∥uh(t)∥2dt =

√∫ T

0

1

T
dt = 1.

Moreover, uh is positively collinear with B⊤h and is constant over time, therefore it satisfies both of the

21



Cauchy-Schwarz equality cases aforementioned, which leads to∣∣∣∣∣〈h,
∫ T

0

Buh(τ)dτ
〉∣∣∣∣∣ = ∥∥B⊤h

∥∥∥∥∥∥∥
∫ T

0

uh(τ)dτ

∥∥∥∥∥ =
∥∥B⊤h

∥∥√T . (3.11)

From (3.10) and (3.11), we clearly obtain

max
∥u∥L2

=1

{∣∣∣∣∣〈h,
∫ T

0

Bu(τ)dτ
〉∣∣∣∣∣
}

=
∥∥B⊤h

∥∥√T , (3.12)

The same process can be applied to the final term in (3.7), yielding the theorem claim.

We remark on the precise meaning of reachability as we defined it: for all undesirable inputs, one can

find a control law such that the goal is reachable. Thus, when Theorem 2 predicts an unreachable goal, it

does not mean that the system can never attain T , but that reaching the goal is not guaranteed for any

undesirable input.

The reader desiring intuition on Theorem 2 should recall that S is the unit sphere in Rn, so the maximum

over S explores every direction for h. The scalar product ⟨h, x0 − xgoal⟩ gives the intuition that h represents

a direction of the system’s travel in the state space. The h maximizing this scalar product is positively

collinear with x0 − xgoal, so it is driving the system away from xgoal. On the other hand, the terms B⊤h and

C⊤h represent how the controls and the undesirable inputs drive the system when they are both along the

direction h. Hence, the h that maximizes ∥C⊤h∥ − ∥B⊤h∥ is the direction giving the most strength to the

undesirable inputs over the controls. Therefore, the h that realizes the overall maximum represents the worst

direction for resilient reachability.

We can strengthen our faith in Theorem 2 by looking at a few special cases. If we assume that x0 = xgoal,

then T is reachable at time T = 0 as, for all h ∈ S, ⟨h, x0 − xgoal⟩ = 0. Another simple case is when B = 0

and C = 0. In this case, ẋ(t) = 0, so for all t ≥ 0, x(t) = x0 and the reachability condition becomes as

expected ∥x0 − xgoal∥ ≤ ε, i.e., equivalent to x0 ∈ T .

With Theorems 1 and 2 we have solved Problem 5. We now have all the tools to start working on

Problem 6, and study how the resilient reachability of target set T evolves with time.

3.6 Evolution of reachability with time

To simplify the notation of Theorem 2, let us first write d := x0 − xgoal and define functions

g(h) :=
∥∥C⊤h

∥∥− ∥∥B⊤h
∥∥ , J(h, t) := ⟨h, d⟩+ g(h)

√
t, and f(t) := max

h∈ S

{
J(h, t)

}
.

Thus, the condition of Theorem 2 is equivalent to f(T ) ≤ ε.

For a given d, the inner product ⟨h, d⟩ in J is bounded for h ∈ S, so, as time T becomes sufficiently large,

resilient reachability of T largely depends on the sign of the coefficient of
√
T , namely g(h). If there are

controls (B ̸= 0), but no undesirable inputs (C = 0), the coefficient is g(h) = −∥B⊤h∥ < 0, so J decreases

with time, which intuitively means that the reachable set grows. The opposite also happens as expected when

B = 0 and C ̸= 0. We now wish to analyze the resilient reachability of target set T over time for general

driftless systems.
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Note first that for t > 0, J(·, t) is not a concave function, and thus its maximization over S is not an

easy task. Indeed, both functions h 7→ ∥C⊤h∥ and h 7→ ∥B⊤h∥ are convex, so g(h) is the difference between

two convex functions. This type of maximization is referred to as a difference of convex (DC) problem, and

analytical solutions are only available for a few special cases. Numerous algorithms have been developed

to solve DC problems, like for instance [97], [98] and [99]. While these numerical results, combined with

Theorem 2, enable us to determine whether set T is resiliently reachable at every given time, they do not

provide any insight regarding reachability by a certain time. Therefore, we will not attempt to solve directly

our DC maximization problem.

Following Theorem 2, target set T is resiliently reachable by time T by system (3.8) if and only if

min
t∈ [0,T ]

{
max
h∈ S

{
J(h, t)

}}
≤ ε.

Hence the reachability by time T can be described as a minimax problem with a DC cost function. We will

omit the discussion of possible numerical solutions to such a problem and instead focus on analytical results.

As noticed above, as time grows,
√
t becomes the leading term in J , with its sign determined by g(h). We

therefore study the sign of max
h∈ S

{
g(h)

}
. We will show the following:

• if max
h∈ S

{
g(h)

}
> 0, target set T is only resiliently reachable up to a certain time,

• if max
h∈ S

{
g(h)

}
= 0, target set T can be either always resiliently reachable, never resiliently reachable, or

its resilient reachability depends on time,

• if max
h∈ S

{
g(h)

}
< 0, target set T is resiliently reachable from some time onwards.

We prove these claims in the following three subsections.

3.6.1 Maximum of g is positive

When max
{
g(h)

}
> 0, there exists some h ∈ S such that ∥C⊤h∥ > ∥B⊤h∥, i.e., in line with our intuition,

there is an input direction where the matrix C produces a stronger undesirable input than what the control

matrix B is capable of counteracting. Since we want to guarantee reaching the goal for any undesirable input,

a single direction where the undesirable inputs are stronger than the controlled ones is sufficient to prevent

resilient reachability. We formalize this intuition as follows.

Theorem 3: If max
h∈ S

{
g(h)

}
> 0, then there exists tlim > 0 such that target set T is not resiliently reachable

at any time t ≥ tlim by system (3.8).

Proof. Because max
h∈ S

{
g(h)

}
> 0, there exists h+ ∈ S such that g(h+) > 0. Then,

f(t) ≥ ⟨h+, d⟩+ g(h+)
√
t −−−→
t→∞

+∞.

Thus, lim
t→∞

f(t) = +∞. Then, there exists tlim > 0 such that for all t ≥ tlim, f(t) > ε, i.e., T is not reachable

at any time t ≥ tlim by system (3.8).

Theorem 3 states that, all resilient reachability can only happen in finite time. It also means that the

state cannot be maintained forever in set T for some undesirable inputs w. This result is interesting from a

safety point of view. Assume that T is the safe set, i.e. the set where states meet all the security conditions
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enacted for this system. Then, even if the state x0 is initially safe, i.e., x0 ∈ T , after some time tlim, the

state x(tlim) might have been pushed out of the safe set T no matter what admissible control input u has

been applied. Having a positive maximum of g is then detrimental for long-term safety.

3.6.2 Maximum of g equals zero

When max
{
g(h)

}
= 0, there is at least one h ∈ S such that g(h) = 0. Intuitively, in this direction h the

undesirable inputs match the controls. But, in directions where g is negative, the controls have a greater

magnitude than the undesirable inputs. Thus, overall the controls can at least compensate the effects of the

undesirable inputs.

Following this intuition, if the state initially belong to the target set, x0 ∈ T , it can be maintained within

it, x(t) ∈ T for all t ≥ 0. Then, the state cannot be forced to exit the safe set by undesirable inputs. This is

the desired comportment for a safety region.

Since undesirable inputs can match the controls in certain directions, the resiliently reachable region does

not expand in every direction with time. Thus, the resilient reachability of T depends on its location. Let

us define H0 := {h ∈ S : g(h) = 0}. Set H0 is closed, bounded, and nonempty by assumption. Hence, with

d = x0 − xgoal, we can define h0 := arg max
h∈H0

{
h⊤d

}
. We note that vector h0 need not be uniquely defined.

The theorem below holds for every h0.

Theorem 4: Assume max
h∈ S

{
g(h)

}
= 0. If ∥d∥ ≤ ε, then target set T is resiliently reachable at all times t ≥ 0

by system (3.8). On the other hand, if ε < h⊤0 d, then T is never resiliently reachable by system (3.8).

Proof. We note that max
h∈ S

{
h⊤d

}
= f(0) = ∥d∥. Thus,

f(t) ≤ max
h∈ S

{
h⊤d

}
+max

h∈ S

{
g(h)

√
t
}
= ∥d∥+ 0 = ∥d∥.

Hence, max
t≥ 0

{
f(t)

}
= ∥d∥. Additionally, h0 ∈ S, so f(t) ≥ h⊤0 d+ g(h0)

√
t = h⊤0 d. Thus, h⊤0 d ≤ f(t) ≤ ∥d∥

for all t ≥ 0.

If ∥d∥ ≤ ε, then for t ≥ 0, f(t) ≤ ε, i.e., by Theorem 2, target set T is resiliently reachable at all times

t ≥ 0 by system (3.8).

On the other hand, if ε < h⊤0 d, then for t ≥ 0, f(t) > ε, i.e., by Theorem 2, target set T is never resiliently

reachable by system (3.8).

There is obviously an intermediate case to Theorem 4, where ε ∈
[
h⊤0 d, ∥d∥

]
and the resilient reachability

of T depends on time.

3.6.3 Maximum of g is negative

We can now tackle the third case, where max
{
g(h)

}
< 0. In this situation, our intuition stipulates that

controls are stronger than the undesirable inputs in every direction, so the reachable set grows unbounded

with time. The theorem below confirms this intuition. And obviously the state can be maintained within any

set already reached. This is ideal from a safety point of view, because the state can be constrained to any

safe set.

Theorem 5: If max
h∈ S

{
g(h)

}
< 0, then there exists tlim ≥ 0 such that target set T is resiliently reachable at

all times t ≥ tlim by system (3.8).
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Proof. We have

f(t) = max
h∈ S

{
h⊤d+ g(h)

√
t
}
≤ max

h∈ S

{
h⊤d

}
+max

h∈ S

{
g(h)

}√
t = ∥d∥+max

h∈ S

{
g(h)

}√
t.

We compare this upper bound with ε to obtain a reachability condition: ∥d∥+max
h∈ S

{
g(h)

}√
t ≤ ε is equivalent

to t ≥
(

∥d∥−ε
γ

)2
:= tlim. Thus, for all t ≥ tlim, f(t) ≤ ε, i.e., target set T is resiliently reachable by

system (3.8).

The tlim defined in Theorem 5 might not be the minimal time for resilient reachability since a first

inequality has been used in order to decouple h⊤d and g(h)
√
t. Nonetheless, Theorem 5 proves that, after

some time, any target set becomes resiliently reachable.

Theorems 3, 4 and 5 show that the sign of the maximum of g leads to interesting conclusions. It is thus

natural to attempt to analytically determine an upper bound for g.

3.6.4 Bounding g

Let σC
⊤

max be the maximal singular value of C⊤, and σB
⊤

min be the minimal singular value of B⊤. We claim

that the relationship between these two values impacts the maximal value of g.

Theorem 6: If σC
⊤

max < σB
⊤

min, then max
h∈ S

{
g(h)

}
< 0.

Proof. Let us define M = CC⊤ ≽ 0. Matrix M is symmetric, and we can use the following classical

inequality [100]: λMmin∥x∥2 ≤ x⊤Mx ≤ λMmax∥x∥2, for all x ∈ Rn, with λMmin and λMmax respectively, the

minimum and maximum eigenvalues of M . Since M is trivially positive semi-definite, λMmin ≥ 0. Note that

∥C⊤h∥ =
√
h⊤CC⊤h =

√
h⊤Mh. Thus we obtain

√
λMmin ≤ ∥C⊤h∥ ≤

√
λMmax = σC

⊤

max, for all h ∈ S. By

doing the same for B⊤, g can be bounded as
√
λC

⊤
min −

√
λB⊤
max ≤ g(h) ≤ σC

⊤

max − σB
⊤

min, for all h ∈ S. Hence,
σC

⊤

max < σB
⊤

min yields max
h∈ S

{
g(h)

}
< 0.

Theorems 5 and 6 trivially imply the following corollary.

Corollary 1: If all singular values of C⊤ are strictly smaller than those of B⊤, then target set T is resiliently

reachable in finite time by system (3.8).

We now illustrate the above theoretical results on two numerical examples.

3.7 Numerical examples

3.7.1 1D system

To illustrate Theorem 1, we consider the following simplistic one-dimensional system:

ẋ(t) = x(t) + bu(t) + cw(t), x0 = 0,

with b ≥ 0, c ≥ 0, xgoal = 1, and F(U) = F(W) =
{
v ∈ L2

(
[0, T ], R

)
: ∥v∥L2 ≤ 1

}
. We will calculate the

resilient reachability condition given by Theorem 1, and verify whether the goal can actually be reached in

that case.
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The condition in Theorem 1 can be simplified since the inner product on R is just a scalar multiplication:∣∣∣∣∣〈h,
∫ T

0

eT−tbu(t)dt
〉∣∣∣∣∣ = |h|︸︷︷︸

=1

·beT
∣∣∣∣∣
∫ T

0

e−tu(t)dt

∣∣∣∣∣ ≤ beT

√∫ T

0

e−2tdt

√∫ T

0

u2dt = beT
√

1− e−2T

2
× ∥u∥L2

.

We used the Cauchy-Schwarz inequality above, and note that the equality case is realized for u(t) = e−t. We

proceed the same way as we did to transform (3.10) into (3.12) and obtain

sup
∥u∥L2

=1

{∣∣∣〈h,∫ T

0

eT−tbu(t)dt
〉∣∣∣} = b

√
e2T − 1

2
.

The last term left to calculate in Theorem 1 is the scalar product from (3.6): ⟨h, e⊤x0 − xgoal⟩ = −h.
Theorem 1 can then be simplified to

1 +

√
e2T − 1

2
(c− b) ≤ ε. (3.13)

Defining m(ε, T ) = (1− ε)
√
2/(

√
e2T − 1), (3.13) is equivalent to

c+m(ε, T ) ≤ b. (3.14)

Intuitively, if (3.14) holds, then the control magnitude b is larger than the magnitude c of undesirable inputs,

plus the minimum margin m(ε, T ) required to reach the target set at time T . The more time is allowed, the

less margin is necessary: m(ε, T ) decreases with T .

We can now test condition (3.14), i.e., Theorem 1, by taking w = −1√
T

and u = 1√
T
. These inputs were

chosen to be of unit norm in L2, with w pulling the state away from its goal and u counteracting w. We can

then calculate the final state:

x(T ) =

∫ T

0

eT−t

(
b

1√
T

+ c
−1√
T

)
dt = (b− c)

(e⊤ − 1)√
T

.

The closest point of the target set from the initial state is xgoal − ε = 1 − ε. Thus, target set T is

reached at T for the particular control input u and the particular undesirable signal w, if x(T ) ≥ 1− ε, i.e.,

b− c ≥ (1− ε)
√
T/(e⊤ − 1). Since (1−ε)

√
T

e⊤−1
≥ m(ε, T ) for all T ≥ 0, the above result validates Theorem 1; if

T is reached above (in which case T is certainly resiliently reachable), (3.14) will hold.

We now proceed to illustrate the developed theory for driftless systems.

3.7.2 A driftless underwater vehicle

We consider an underwater robot propelled by a main engine and two side engines for operations in a 2D

plane, as shown in Fig. 3.2. We consider the scenario where the main engine u1 has a small bias in the y

direction. The system dynamics are thus given by

Ẋ =

[
ẋ

ẏ

]
=

[
10 1 1

0.2 −1 1

]u1u2
u3

 .
Our example is motivated by the works [101], [102], which have also considered underwater driftless
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u1

u2u3

x

y

Figure 3.2: A model of an underwater robot with three actuators.

dynamics. The assumption of driftlessness can intuitively be justified by the viscosity of the water combined

with a small speed of the robot.

We assume that during its mission the controller loses authority over the third engine. The terms in (3.8)

can thus be written as follows:

u =

[
u1

u2

]
, w = u3, B =

[
10 1

0.2 −1

]
, C =

[
1

1

]
.

Intuitively, the robot should still be able to reach any goal set, since the second actuator u2 can counteract

the undesirable inputs of u3, and the small bias of u1 on y provides a net motion on y, while the desired

displacement along x is also realized by the main engine. While the conditions of Theorem 6 are not satisfied,

we can compute max
h∈ S

{
g(h)

}
= −0.02, and use Theorem 5 to show that any goal is eventually resiliently

reachable, as suggested by our intuition.

In the situation where the controller loses authority over both the second and third actuators, our intuition

suggests that a controlled motion along x is still possible, but the displacements along y cannot be controlled.

Therefore, we cannot guarantee to reach any target position. We numerically compute g and find that

max
h∈ S

{
g(h)

}
= 1.4 > 0. The conclusion of Theorem 3 validates our intuition.

If the controller only loses authority over the first actuator, then max
h∈ S

{
g(h)

}
= 8.6 > 0. Of course none of

the side engines can make up for the loss of the main one, as predicted by Theorem 3.

Another interesting case to note is when u1 thrusts only along x without bias on y, i.e.,

Ẋ =

[
ẋ

ẏ

]
=

[
10 1 1

0 −1 1

]u1u2
u3

 .
Then, a loss of control authority over one of the side engines results in max

h∈ S

{
g(h)

}
= 0.02 > 0. Indeed, we

cannot guarantee to reach a goal that is not on the x axis, because no net motion on y is guaranteed, since

both side engines can cancel each other out.

3.8 Summary

This chapter described and tackled the problem of resilient reachability for systems with bounded energy. We

established analytical conditions under which a system can always be driven to a desired target, given that

some of its actuators act in an undesirable manner and without prior knowledge of these undesirable inputs.

To solve this problem, we derived a resilient reachability condition for linear systems and a more specific

condition for driftless systems. We investigated the evolution of resilient reachability with time and rewrote
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the problem as a minimax optimization with a concave-convex objective function. We then derived results

that do not require directly solving the optimization problem, at the price of providing sufficient or necessary

conditions.
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Chapter 4

Designing Resilient Linear Systems

with Bounded Energy

4.1 Introduction

This chapter continues the resilience investigation of linear systems with bounded energy and relies on our

work [35]. Building on Chapter 3, we define resilience as the capability to resiliently reach any state and we

study how to design linear systems with bounded energy that are resilient to the loss of control authority over

any one of their actuators. Chapter 3 showed that redundant actuators are necessary for resilient reachability

and hence we aim at guaranteeing resilience with a minimal redundancy. The contributions of this chapter

are twofold. First, we determine the minimal degree of overactuation necessary to design a resilient system.

Second, we synthesize a control law driving a resilient system’s state to its target despite loss of control

authority over some actuators. To establish these results, we first focus on driftless systems, a common

application in robotics [96], before extending our findings to systems with drift.

This chapter is organized as follows. Section 4.2 defines the problems of interest and introduces preliminary

results. In Section 4.3, we develop the notion of resilient control matrices and we determine their minimal

size in Section 4.4. Building on the driftless case, Section 4.5 focuses on the synthesis of a resilient control

law for linear systems with and without drift. We illustrate our theory in Section 4.6 with three scenarios of

a fighter jet undergoing a loss of control authority.

4.2 Problem statement and preliminaries

We use the same setting as in Chapter 3 and hence we consider a system initially governed by the differential

equation

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, (4.1)

where A ∈ Rn×n and B̄ ∈ Rn×m are constant matrices. Let T := B(xgoal, ε) ⊆ Rn be the target ball to be

reached by the state x. During its mission the system loses control authority over p of its m actuators. These

p actuators are then producing uncontrolled and undesirable inputs w. Thanks to sensors on each actuators,

we can separate signal ū into its uncontrolled part w and the controls u. Similarly, matrix B̄ is split into its
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uncontrolled part C ∈ Rn×p and its controlled actuators B ∈ Rn×(m−p), leading to

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn, u ∈ F(U), w ∈ F(W), (4.2)

with admissible inputs of finite energy belonging to the sets F(U) :=
{
u ∈ L2

(
[0, T ], U

)
: ∥u∥L2

≤ 1
}
and

F(W) :=
{
w ∈ L2

(
[0, T ], W

)
: ∥w∥L2

≤ 1
}
. We want to characterize systems that are able to reach their

target even after a loss of control over some of their actuators. We now recall the definition of resilient

reachability from Chapter 3.

Definition 3: The target set T is resiliently reachable at time T by system (4.2) if for any undesirable inputs

w ∈ F(W), there exists an admissible control law uw ∈ F(U) such that x(T ) ∈ T .

As in Chapter 3, the control law uw can depend on the undesirable input w. Indeed, we assume to have

sensors on each actuators so that all inputs to the system are available to the controller. Therefore, resilient

reachability guarantees that whatever the undesirable inputs are, there is a control law dependent on the

undesirable inputs driving the system to its target. We have the intuition that a system resilient to the loss

of control over some of its actuators must be initially overactuated, i.e., its control matrix B̄ has strictly more

columns than rows. Since adding actuators in practice comes with a cost, we consider the following problem.

Problem 7: Determine the minimal degree of overactuation required to build a resilient system.

Definition 3 calls for the existence of a control law, so we are naturally led to our second objective.

Problem 8: For a resilient system sustaining an undesirable input w, synthesize a control law uw that drives

the system’s state x(t) to the target T .

The resilience of a linear system (4.1) is mostly determined by its control matrix B̄. Therefore, in the

next two sections we first focus on driftless systems, i.e., where (4.2) becomes

ẋ(t) = Bu(t) + Cw(t), x(0) = x0 ∈ Rn, u ∈ F(U), w ∈ F(W). (4.3)

According to Chapter 3, the resilience of these systems is linked to the sign of the maximum of g(h) :=

∥C⊤h∥ − ∥B⊤h∥ over h ∈ S. Since this maximum is difficult to compute, we introduce an equivalent but

more convenient criteria.

Theorem 7: For F := BB⊤ − CC⊤, the following hold:

(a) If F ≻ 0, there exists a time tlim such that T is resiliently reachable for all t ≥ tlim.

(b) If F ⪰̸ 0, there exists a time tlim such that T is not resiliently reachable for all t > tlim.

Proof. If F ≻ 0, then for all h ∈ S, we have 0 < h⊤Fh, i.e., h⊤CC⊤h < h⊤BB⊤h. This is equivalent to

max
h∈ S

g(h) < 0, and thus according to Theorem 5, there exists a time tlim after which T is resilient reachable.

Similarly, if F ⪰̸ 0, there is h ∈ S such that h⊤Fh < 0, i.e., max
h∈ S

g(h) > 0. Following Theorem 3 there

exists a time tlim after which T is not resiliently reachable.

With this simple resilient reachability condition, we investigate the resilience of a system.
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4.3 Resilient control matrices

When losing control authority over p actuators, we remove the corresponding columns j1, . . . , jp from B̄ to

form the matrix C, and we name B the remaining control matrix.

Definition 4: The control matrix B̄ ∈ Rn×m is p-resilient if for all pairwise distinct j1, . . . , jp ∈ [[1,m]] the

system following the driftless dynamics (4.3) can resiliently reach any target ball.

Definition 5: The degree of resilience of matrix B̄ is the largest p ∈ N for which B̄ is p-resilient.

Proposition 2: The control matrix B̄ is p-resilient if and only if max
h∈ S

g(h) < 0 for all pairwise distinct

j1, . . . , jp ∈ [[1,m]], if and only if F ≻ 0 for all pairwise distinct j1, . . . , jp ∈ [[1,m]].

Proof. If max
h∈ S

g(h) < 0 for all pairwise distinct j1, . . . , jp ∈ [[1,m]], then from Theorem 5, any target ball is

resiliently reachable, so B̄ is p-resilient. On the other hand, assume B̄ is p-resilient. For all pairwise distinct

j1, . . . , jp ∈ [[1,m]], the continuous function g reaches a maximum gmax over the compact set S. If gmax ≥ 0,

then from Theorems 3 and 4 some target balls are not resiliently reachable. Thus, gmax < 0. From Theorem 7,

the equivalence with F ≻ 0 holds.

Proposition 2 enables us to assess the p-resilience of a system with m actuators by verifying the positive

definiteness of
(
m
p

)
matrices. We now establish several results concerning resilient matrices in order to address

Problem 7.

Proposition 3: If B̄ is p-resilient with p ≥ 1, then B̄B̄⊤ ≻ 0.

Proof. Assume that B̄B̄⊤ is not positive definite. Then, there exists x ̸= 0 such that x⊤B̄B̄⊤x ≤ 0. Let C be

the last column of B̄, so that B̄B̄⊤ =
[
B C

][B⊤

C⊤

]
= BB⊤ +CC⊤. Then, F = BB⊤ −CC⊤ = B̄B̄⊤ − 2CC⊤.

Thus, x⊤Fx = x⊤B̄B̄⊤x− 2x⊤CC⊤x ≤ 0− 2∥C⊤x∥2 ≤ 0, so F ⪰̸ 0. By Proposition 2, B̄ is not 1-resilient

and thus not p-resilient either since p ≥ 1.

Proposition 4: If B̄ is p-resilient with p ≥ 1, then the system is overactuated.

Proof. Assume B̄ ∈ Rn×m is not overactuated, i.e., m ≤ n. After losing control of one actuator, the remaining

control matrix B has n rows and at most n − 1 columns. From [100], rank(BB⊤) ≤ rank(B) ≤ n − 1.

Since BB⊤ ∈ Rn×n, it is not invertible. Then, BB⊤ ⊁ 0, so F = BB⊤ − CC⊤ ⊁ 0 either. According to

Proposition 2, B̄ is not p-resilient.

Intuitively a system without actuator redundancy cannot be resilient, because a malfunctioning actuator

cannot be counteracted. On the other hand, numerous copies of each actuator guarantees resilience. In

between these extremes lies a minimum degree of overactuation required for resilience.

Proposition 5: The degree of resilience of B̄ is not affected by left multiplication by an invertible matrix.

Proof. For P invertible, PFP⊤ ≻ 0 if and only if F ≻ 0. Proposition 2 concludes the proof.

We can now simplify the resilience investigation with the Singular Value Decomposition (SVD). The

compact SVD [103] of B̄ is UDV , with U orthogonal of size n × n, D a diagonal matrix gathering the n

singular values of B̄, and V of size n×m with orthonormal rows, i.e., V V ⊤ = In.

Proposition 6: The following statements hold for p ≥ 1:
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(a) If B̄ is p-resilient, then V is also p-resilient.

(b) If V is p-resilient and B̄B̄⊤ ≻ 0, then B̄ is p-resilient.

Proof. (a) According to Proposition 3, B̄B̄⊤ ≻ 0, so the singular values of B̄ are non-zero [103]. Then, D

is invertible and since U is also invertible, Proposition 5 states that B̄ = UDV and V have the same

degree of resilience.

(b) Since B̄B̄⊤ ≻ 0, the matrix D is invertible. Then, by Proposition 5, B̄ has the same degree of resilience

as V .

Following Proposition 6 we study V to determine the resilience of B̄ since, contrary to B̄, V has the

practical property of having orthonormal rows. We split V similarly to B̄ into a controlled part BV and an

uncontrolled part CV .

Proposition 7: The matrix V ∈ Rn×m is p-resilient if and only if σ
C⊤

V
max <

1√
2
for all

(
m
p

)
possible CV

matrices.

Proof. We investigate whether FV := BVB
⊤
V − CV C

⊤
V ≻ 0. Note that V V ⊤ = BVB

⊤
V + CV C

⊤
V . Since

V V ⊤ = In, FV = V V ⊤ − 2CV C
⊤
V = In − 2CV C

⊤
V . Let λ be an eigenvalue of FV : 0 = det

(
λIn − FV

)
=

det
(
(λ − 1)In + 2CV C

⊤
V

)
=
(
− 2
)n

det
[(

1−λ
2

)
In − CV C

⊤
V

]
. Define s := 1−λ

2 , so that s is an eigenvalue

of CV C
⊤
V . Let x ̸= 0 be an eigenvector such that CV C

⊤
V x = sx. A left multiplication by x⊤ lead to

∥C⊤
V x∥2 = s∥x∥2, so s ≥ 0.

Then,
√
s is a singular value of C⊤

V . We note that λ > 0 if and only if
√
s < 1√

2
. Since σ

C⊤
V

max is the

maximal singular value of C⊤
V , FV ≻ 0 if and only if σ

C⊤
V

max <
1√
2
.

With Propositions 6 and 7, Problem 7 is now within our reach for 1-resilient matrices.

4.4 Minimal size of resilient matrices

We now establish a necessary condition determining the minimal size of a 1-resilient control matrix.

Theorem 8: If B̄ ∈ Rn×m is 1-resilient, then m ≥ 2n+ 1.

Proof. Since B̄ is 1-resilient, Proposition 6 states that V is also 1-resilient. Let Cj be the columns of V and

ri its orthonormal rows, i.e., ∥ri∥ = 1. Then,

m∑
j=1

∥Cj∥2 =

m∑
j=1

n∑
i=1

V 2
ij =

n∑
i=1

m∑
j=1

V 2
ij =

n∑
i=1

∥ri∥2 = n. (4.4)

Thus, max
j

∥Cj∥2 ≥ n
m . From [100], max

j
∥Cj∥2 =

(
σC

⊤

max

)2
. Then, Proposition 7 yields n

m < 1
2 , i.e.,

m ≥ 2n+ 1.

Theorem 8 shows that at least 2n + 1 actuators are required to have a 1-resilient control system in n

dimensions. We will now prove that n× (2n+1) is in fact the minimal size of 1-resilient matrices by producing

such a matrix for all n ∈ N. Let B̄k := [In . . . In D] the matrix composed of k identity matrices In and a

column vector D := 1√
n
[1 . . . 1]⊤.
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Proposition 8: The matrix B̄2p is p-resilient.

Proof. We calculate the maximum of g(h) = ∥C⊤h∥ − ∥B⊤h∥ over h ∈ S for all possible losses of p columns

among the 2p+ 1 columns of matrix B̄2p.

First, assume the system loses control of p columns belonging all to the identity matrices. Without loss of

generality we assume losing one column per matrix. The index of the column lost in the ith identity matrix is

ji ∈ [[1, n]]. These columns form the matrix C =
[
ej1 . . . ejp

]
, while B is the remaining control matrix. Then,

h =
(
h1, . . . , hn

)
∈ S, i.e., ∥h∥2 = 1, yields C⊤h =

(
hj1 , . . . , hjp

)
so ∥C⊤h∥2 =

∑p
i=1 h

2
ji
,

∥B⊤h∥2 = 2p

n∑
i=1

h2i −
p∑
i=1

h2ji +

(
n∑
i=1

hi√
n

)2

= 2p−
p∑
i=1

h2ji +
1

n

(
n∑
i=1

hi

)2

,

g(h) < 0 ⇐⇒
p∑
i=1

h2ji < 2p−
p∑
i=1

h2ji +
1

n

(
n∑
i=1

hi

)2

⇐⇒
p∑
i=1

h2ji < p+
1

2n

(
n∑
i=1

hi

)2

. (4.5)

If j1 = . . . = jp, and h = ej1 , then (4.5) simplifies into p < p+ 1
2n , which is true.

If at least one of the ji is different from the others, then at least two different components of h are present

in the sum
∑p
i=1 h

2
ji
. Because ∥h∥ = 1, vector h cannot have two components both equal to 1, at least one of

them is strictly inferior to 1. Assume without loss of generality that hj1 < 1. Because ∥h∥ = 1, we also have

hji ≤ 1. Thus, h2j1 +
∑p
i=2 h

2
ji
< 1 +

∑p
i=2 h

2
ji
≤ 1 + (p− 1) = p.

Another possible case, is that j1 = . . . = jp but h ̸= ej1 . Because ∥h∥ = 1, hj1 < 1 otherwise we would

have h = ej1 . Then,
∑p
i=1 h

2
ji
= ph2j1 < p. These were the only two other possible cases and in each of them

some hji < 1, so
∑p
i=1 h

2
ji
< p, so the inequality also holds true. Overall g(h) < 0 for all h ∈ S and all choice

of columns j1, . . . , jp ∈ [[1, n]].

The other possibility is that B̄2p loses p− 1 columns among the identity matrices and the last column D.

Then,

g(h) =

√√√√p−1∑
i=1

h2ji +
1

n

(
n∑
i=1

hi

)2

−

√√√√2p−
p−1∑
i=1

h2ji .

Since ∥h∥ = 1, h2ji ≤ 1 for all i ∈ [[1, p− 1]]. Then,

(
n∑
i=1

hi

)2

≤

(
n∑
i=1

h2i

)(
n∑
i=1

12

)
= ∥h∥2n = n,

by the Cauchy-Schwarz inequality [95]. Thus,

g(h) ≤
√
p− 1 +

1

n
n−

√
2p− (p− 1) ≤ √

p−
√
p+ 1 < 0,

i.e., max
h∈ S

g(h) < 0, so B̄2p is p-resilient according to Proposition 2.

Therefore, B̄2 =
[
In InD

]
is 1-resilient and has only 2n+ 1 columns. Following Theorem 8, the minimal

size of a 1-resilient matrix is then exactly n× (2n+ 1). We will now investigate sufficient conditions allowing

to generate 1-resilient control matrices by making use of Proposition 7.

Proposition 9: Any matrix V ∈ Rn×m where m ≥ 2n+ 1 which has orthonormal rows and whose columns

have all the same norm, is 1-resilient.
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Proof. Since the columns C of matrix V have the same norm, (4.4) implies ∥C∥2 = n
m . The maximal singular

value of a column vector is its norm [100], so σC
⊤

max = ∥C∥ =
√

n
m . Since m ≥ 2n+ 1, we obtain

n

m
≤ 1

2
− 1

2m
<

1

2
, i.e., σC

⊤

max <
1√
2
.

Then, Proposition 7 states that V is 1-resilient.

Intuitively, the columns of V having the same norm means that the actuators are equally powerful, whereas

the rows having the same norm means that all the states are equally actuated. Furthermore, the orthogonality

of rows enforces the necessary condition for 1-resilience of Proposition 3 by making V V ⊤ positive definite.

With Proposition 9 we can now easily generate 1-resilient matrices for any size n. For instance,

[
1 1 1 1 1 1

1 1 1 −1 −1 −1

]
and

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

 are both 1-resilient.

We now wish to expand our minimal size investigation to higher degrees of resilience. We start by

extending Proposition 9 to 2-resilient matrices with a large increase in the calculations required.

Proposition 10: Any matrix V ∈ Rn×m where m ≥ 4n+ 1 which has orthonormal rows and whose columns

have all the same norm, with at least two columns being collinear, is 2-resilient.

Proof. Similarly as in the proof of Proposition 9 the columns have a squared norm of ∥C∥2 = n
m . We extract

any two columns C1 and C2 from V to form C, the remaining part of V is named B. Since C =
[
C1 C2

]
, we

have CC⊤ = C1C
⊤
1 + C2C

⊤
2 .

The singular values σC
⊤
of C⊤ are defined as the square roots of the eigenvalues s of CC⊤. Therefore we

calculate s =
(
σC

⊤)2
to use Proposition 7. From the matrix determinant lemma [100],

0 = det
(
sIn − CC⊤) = det

(
sIn − C1C

⊤
1 − C2C

⊤
2

)
=
(
1− C⊤

2

(
sIn − C1C

⊤
1

)−1
C2

)
det
(
sIn − C1C

⊤
1

)
.

If det
(
sIn−C1C

⊤
1

)
= 0, then the resulting eigenvalue is either 0 or ∥C1∥2 = n

m by [100]. To investigate when

the other term goes to zero, we develop the inverse into a Neumann series [100] for s such that
∥∥∥C1C

⊤
1

s

∥∥∥ < 1:

s
(
sIn − C1C

⊤
1

)−1
=

(
In − C1C

⊤
1

s

)−1

=

∞∑
p=0

(
C1C

⊤
1

s

)p
(4.6)

= I +

∞∑
p=1

1

sp
C1

(
C⊤

1 C1

)p−1
C⊤

1 = I +
C1C

⊤
1

s

∞∑
p=1

(
∥C1∥2

s

)p−1

= I +
C1C

⊤
1

s

1

1− ∥C1∥2

s

= I +
C1C

⊤
1

s− ∥C1∥2
.

Then,
(
1− C⊤

2

(
sIn − C1C

⊤
1

)−1
C2

)
= 0 ⇐⇒ s = C⊤

2 s
(
sIn − C1C

⊤
1

)−1
C2

⇐⇒ C⊤
2

(
I +

C1C
⊤
1

s− ∥C1∥2

)
C2 = s = ∥C2∥2 +

(
C⊤

1 C2

)2
s− ∥C1∥2

⇐⇒ s2 −
(
∥C1∥2 + ∥C2∥2

)
s+ ∥C1∥2∥C2∥2 −

(
C⊤

1 C2

)2
= 0.
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Recall that ∥C1∥2 = ∥C2∥2 = n
m . Then the previous equation becomes s2 − 2n

m s+
n2

m2 −
(
C⊤

1 C2

)2
= 0. The

maximal root of this quadratic equation is

smax =
n

m
+
∣∣C⊤

1 C2

∣∣. (4.7)

This expansion is only valid for the case where s satisfies
∥∥∥C1C

⊤
1

s

∥∥∥ < 1. We note that ∥C1C
⊤
1 ∥ = λmax(C1C

⊤
1 ) =

∥C1∥2 = n
m , from [100]. Therefore, in the other case s ≤ n

m . From (4.7) we deduce that smax is the maximal

eigenvalue of CC⊤.

The matrix C maximizing smax is the one composed of two collinear columns of V . Indeed, by the

Cauchy-Schwarz inequality
∣∣C⊤

1 C2

∣∣ ≤ ∥C1∥ ∥C2∥, and the equality only happens when C1 and C2 are collinear.

In that case, smax = 2n
m . Then, the resilience condition of Proposition 7 is equivalent to 2smax < 1, i.e.,

m ≥ 4n+ 1. Thus, V is 2-resilient.

Note that two collinear columns of same norm are either the same or opposites. Proposition 10 thus

deals with the case where at least one actuator of the system is doubled. With the guidelines provided by

Proposition 10 we produce an example of a 2-resilient matrix V of size 2× 10:

V =

[
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 −1 −1 −1 −1 −1

]
.

With Proposition 8 we can generate p-resilient matrices of size n× (2pn+ 1). For p = 1 it corresponds to

n× (2n+ 1), which is the minimal size for 1-resilient matrices. For p = 2, we obtain a matrix with 4n+ 1

columns, which is consistent with the minimal size detailed in Proposition 10.

In order to determine the minimal size of a p-resilient matrix, with p ≥ 2, the only missing result is an

equivalent of Theorem 8 for higher degrees of resilience. However, the proof of Theorem 8 becomes increasingly

complicated as the desired degree of resilience increases. Indeed, the case p = 2 treated in Proposition 10

requires significantly more complex calculations than for the case p = 1 of Proposition 9. Without the

assumption of same column norm for the case p = 2 the calculations do not even reach a conclusion. For

p ≥ 3, the calculations become even more cumbersome. The Neumann series (4.6) becomes

s

sIn −
p−1∑
j=1

CjC
⊤
j

−1

=

∞∑
k=0

(
p−1∑
j=1

CjC
⊤
j

s

)k
.

We would then need the multinomial formula to calculate each term of the series:(
p−1∑
j=1

CjC
⊤
j

)k
=

∑
i1+...+ip−1=k

(
k

i1, ..., ip−1

)
p−1∏
j=1

(
CjC

⊤
j

)ij
.

Proceeding to the separation of
(
CjC

⊤
j

)ij
into a scalar part with the power ij − 1 and a matrix part like

we did for p = 2 is still possible but brings numerous cross-terms that did not appear for p = 2. Because of

the complexity of the calculations for p ≥ 2, we were unable to obtain a simple necessary condition on the

minimal size of such p-resilient matrices.

Remark: If we based our intuition about the minimal size of p-resilient matrices on Theorem 8 and on

Proposition 8, then we might conjecture a minimal size of n× (2pn+ 1) for p-resilient matrices B̄.
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Such a conjecture holds for 2-resilient matrices with a state dimension n = 1. Indeed, let us consider

B̄ =
[
b1 b2 b3 b4

]
. Without loss of generality, assume that b3 and b4 have a greater absolute value than

b1 and b2. When losing control of the last two columns we form B =
[
b1 b2

]
and C =

[
b3 b4

]
. Then,

F = BB⊤ − CC⊤ = b21 + b22 − b23 − b24 ≤ 0. Therefore, there are no 2-resilient matrices of size 1 × 4. The

minimal size of a 2-resilient matrix for n = 1 is then 1× 5, since
[
1 1 1 1 1

]
is 2-resilient.

However, we are able to generate 2-resilient matrices of size n× 4n for n = 6 and n = 8, and even of size

n× (4n− 2) for n = 12. We will now provide the intuition that led us to these counterexamples.

We consider a matrix V ∈ Rn×m with orthogonal rows whose only elements are ±1. Obviously, all

columns have the same norm: ∥C∥2 = n, and the maximal singular value of CC⊤ defined in (4.7) becomes

smax =
∣∣C⊤

1 C2

∣∣+ n, with the notations from the proof of Proposition 10. To build a 2-resilient matrix of

minimal size, we need to minimize smax. Indeed, for these matrices the resilience condition of Proposition 7

becomes 2smax < m. For a small smax, we should then be able to have a small number m of columns. To

minimize smax, V should not have any collinear columns, because they would maximize the scalar product∣∣C⊤
1 C2

∣∣, as seen in the proof of Proposition 10.

There are 2n different vectors composed of n elements ±1. These vectors are only collinear with the vector

of opposite sign. Thus, there are 2n−1 of such non-collinear vectors. To build a matrix with 4n columns,

we then require 2n−1 ≥ 4n. The minimal dimension realizing that condition is n = 6. We believe that it is

impossible to build a 2-resilient matrix of 4n columns for n ≤ 5.

We propose two ways of generating a 2-resilient matrix with 4n columns for n ≥ 6. The first approach

consists in producing all the non-collinear vectors and then selecting 4n of them to create a matrix with

orthogonal rows. With this approach, we were able to generate a 2-resilient matrix of size 6× 24 shown in

(4.8).

B̄=



1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 1 −1 1

1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 1 1 −1 1 −1 1 −1 1 1

1 1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 −1 1 1

1 1 −1 1 1 1 1 −1 1 1 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1 1 −1

1 1 1 −1 1 1 1 1 −1 1 1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 −1

1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 1 1 −1 −1 −1


. (4.8)

The other approach uses Hadamard matrices [104]. These matrices are square, orthogonal, and composed

of only ±1. By carefully selecting n rows of a 4n×4n Hadamard matrix, it is possible to have 4n non-collinear

columns. We extracted 8 chosen rows of a 32 × 32 Hadamard matrix and we built a 2-resilient matrix of

minimal size 8× 32 as shown in (4.9).
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B̄⊤ =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 −1

1 1 1 1 1 1 −1 1

1 1 1 1 1 1 −1 −1

1 1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 1 1

−1 −1 1 1 1 1 1 1

1 1 1 1 −1 −1 1 −1

1 1 −1 −1 1 1 1 −1

−1 −1 1 1 1 1 1 −1

1 1 1 1 −1 −1 −1 1

1 1 −1 −1 1 1 −1 1

−1 −1 1 1 1 1 −1 1

1 −1 1 −1 1 −1 1 1

1 −1 −1 1 1 −1 1 1

−1 1 1 −1 1 −1 1 1

−1 1 −1 1 1 −1 1 1

1 −1 −1 1 −1 1 1 1

1 −1 1 −1 −1 1 1 1

−1 1 −1 1 −1 1 1 1

−1 1 1 −1 −1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1

1 −1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 1 −1

1 −1 −1 1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1



. (4.9)

In order to generate a 2-resilient matrix with an even lower degree of overactuation, the maximal scalar

product in (4.7) must be made even smaller. We succeeded by taking n = 12 and selecting n partial rows

from a 4n× 4n Hadamard matrix in order to obtain a 2-resilient matrix of size n× (4n− 2). This matrix is

not shown here because its size exceeds a single page and showing its 552 entries of ±1 has little interest.

Therefore the above conjecture is wrong. Its demise also explains why the proof of Theorem 8 cannot be

extended to higher degrees of resilience. It is now time to tackle Problem 8, the generation of a control law

for resilient systems.

4.5 Control synthesis

The definition of resilient reachability, Definition 3 requires the existence of a control law uw depending on

the undesirable input w, but so far we never synthesized one. A natural follow-up question is thus one of

designing such a control law. When B is not invertible, this question is not trivial as the control u needs to
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counteract w ∈ F(W) while remaining in U .

Theorem 9: If F ≻ 0, then there exists α > 0 such that

u(t) := B⊤(BB⊤)−1
(
− Cw(t) + α

(
xgoal − x(t)

))
(4.10)

drives the state of (4.3) to xgoal and u ∈ F(U) for any w ∈ F(W).

Proof. Since F = BB⊤ − CC⊤ ≻ 0, obviously BB⊤ ≻ 0, so BB⊤ is invertible, and (4.10) is well-defined. If

we plug (4.10) into the state equation (4.3) we obtain ẋ = α
(
xgoal − x

)
. The solution is x(t) = xgoal + e−αtd,

with d = x(0)−xgoal. Since α > 0, x(t) converges globally exponentially to xgoal, the control law is successful.

We now need to prove that ∥u∥L2
≤ 1 for all w ∈ F(W). Note that xgoal − x(t) = −e−αtd, and let

υ(t) := Cw(t) + αe−αtd, so that u(t) = −B⊤(BB⊤)−1
υ(t). Then,

∥u∥2L2
=

∫ T

0

u(t)⊤u(t) dt =

∫ T

0

υ(t)⊤
(
BB⊤)−1

υ(t) dt.

To simplify, let P :=
(
BB⊤)−1 ≻ 0, and expand υ(t) as

υ(t)⊤Pυ(t) = w(t)⊤C⊤PCw(t)︸ ︷︷ ︸
= T1

+w(t)⊤C⊤Pαe−αtd︸ ︷︷ ︸
= T2

+αe−αtd⊤PCw(t)︸ ︷︷ ︸
= T3

+α2d⊤e−αtPe−αtd︸ ︷︷ ︸
= T4

(4.11)

We start by upper bounding the term T1. Let λM be the maximal eigenvalue of the positive semidefinite

matrix C⊤(BB⊤)−1
C. Then,

∫ T

0

T1dt =

∫ T

0

w(t)⊤C⊤(BB⊤)−1
Cw(t) dt ≤

∫ T

0

w(t)⊤λMw(t) dt ≤ λM∥w∥2L2
≤ λM , (4.12)

since ∥w∥L2
≤ 1 for all w ∈ F(W). We will now prove that λM < 1 through some convoluted linear algebra.

From the Woodbury formula [100],
(
I +C⊤F−1C

)
is invertible, because F is invertible. Then, we can rewrite

matrix P as

P =
(
BB⊤)−1

=
(
F + CC⊤)−1

= F−1 − F−1C
(
I + C⊤F−1C

)−1
C⊤F−1.

Let D := C⊤F−1C. Then, C⊤PC = D − D
(
I + D

)−1
D. Expanding

(
I + D

)−1(
I + D

)
= I yields(

I+D
)−1

D = I−
(
I+D

)−1
, so that C⊤PC = D−D+D

(
I+D

)−1
. Similarly, from

(
I+D

)(
I+D

)−1
= I,

we finally obtain

C⊤(BB⊤)−1
C = I −

(
I +D

)−1
.

Let λ be an eigenvalue of C⊤(BB⊤)−1
C. Then,

0 = det
(
λI − C⊤(BB⊤)−1

C
)
= det

(
λI − I +

(
I +D

)−1)
= det

(
(λ− 1)(I +D)(I +D)−1 + I(I +D)−1

)
= det

(
(λ− 1)(I +D) + I

)
det(I +D)−1.

From the Woodbury formula we know that (I + D) is invertible, so det(I + D))−1 ̸= 0. If λ = 1, then

det(I) = 0, which is absurd. Thus λ ̸= 1, so we can divide by (λ− 1):

0 = det
(
I +D +

1

λ− 1
I
)
= det

( λ

λ− 1
I +D

)
.

38



Since F−1 ≻ 0, C⊤F−1C ⪰ 0, i.e. the eigenvalues of D are nonnegative, so −λ
λ−1 ≥ 0. Since BB⊤ ≻ 0,

(BB⊤)−1 ⪰ 0 and then C⊤(BB⊤)−1
C ⪰ 0, thus λ ≥ 0. Then λ− 1 < 0, i.e. λ < 1, and hence λM < 1.

We can now tackle the integral of the second term of (4.11):∫ T

0

T2dt =

∫ T

0

αw(t)⊤C⊤Pe−αtd dt = α

∫ T

0

w(t)⊤e−αtdt C⊤Pd.

We use the Cauchy-Schwarz inequality

∣∣∣∣∣
∣∣∣∣∣
∫ T

0

w(t)⊤e−αtdt

∣∣∣∣∣
∣∣∣∣∣ =

√√√√ m∑
i=1

(∫ T

0

wi(t)e−αtdt

)2

≤

√√√√ m∑
i=1

(∫ T

0

w2
i (t)dt

)(∫ T

0

e−2αtdt

)
(4.13)

=

√√√√[e−2αt

−2α

]⊤
0

∫ T

0

m∑
i=1

w2
i (t)dt =

√
1− e−2αT

2α
∥w∥L2

.

Thus,

∫ T

0

T2 dt ≤
√
α

2
∥C⊤Pd∥ ∥w∥L2

, and similarly,

∫ T

0

T3 dt ≤
√
α

2
∥d⊤PC∥ ∥w∥L2

. (4.14)

We also simplify the integral of the fourth term of (4.11):

∫ T

0

T4 =

∫ T

0

α2d⊤e−αtPe−αtd dt = α2d⊤Pd

∫ T

0

e−2αt dt = α2d⊤Pd

[
e−2αt

−2α

]⊤
0

=
α

2
d⊤Pd

(
1− e−2αT

)
≤ α

2
d⊤Pd. (4.15)

Then, we combine (4.12), (4.13), (4.14) and (4.15):

∥u∥2L2
≤ α

2
d⊤Pd+ 2

√
α

2
∥C⊤Pd∥+ λM . (4.16)

Since λM < 1, and d, P and C are constant, we can choose α small enough so that the right hand side of

(4.16) is smaller than 1, which finally leads to ∥u∥2L2
≤ 1, i.e. u ∈ F(U).

The proof of Theorem 9 provides a constructive method of finding α satisfying the claim of the theorem.

The maximum α satisfying Theorem 9 and thus ensuring the fastest convergence to xgoal is given by

α∗ = 2

(√
b2 + (1− λM )a− b

)2
a2

, with a = d⊤Pd and b = ∥C⊤Pd∥. (4.17)

Theorem 9 gives an intuitive validation of the work developed in the previous sections. Indeed, we

established that resilient reachability implies F ≻ 0. From Theorem 9, we see that such a condition is indeed

sufficient to build a control law of the form (4.10).

The positive definiteness of F brings two results. The part BB⊤ ≻ 0 guarantees the existence of u. But

BB⊤ is more than just positive definite, in fact BB⊤ ≻ CC⊤. This relation ensures that u of the form (4.10)

remains within the bounds of U even when w is maximal.

We finally return to the general linear system (4.2). We will show that a control law similar to (4.10) can

be used if matrix A is not overly unstable. The intuition is that the magnitude of u in excess of w can be

used to counteract instability of A to a certain extent. We formalize our intuition below.

For all η > max(Re(λ(A))), we can find β > 0 such that ∥eAt∥ ≤ βeηt for all t ≥ 0 [105]. Using
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P =
(
BB⊤)−1

and λM = max
(
λ(C⊤PC)

)
we define for all η ∈ R the set

Aη :=
{
α > η : λM +

α√
α− η

√
2β∥C⊤P∥∥x0∥+

α2

α− η

β2

2
∥P∥∥x0∥2 ≤ 1

}
. (4.18)

We showed in the proof of Theorem 9 that F ≻ 0 implies λM < 1. Then, taking α sufficiently small would

satisfy the condition of (4.18), as long as η is even smaller. There is of course a trade-off here because taking

η very close to max(Re(λ(A))) leads to a larger β and thus requires an even smaller α to satisfy the inequality

in (4.18).

Theorem 10: If F ≻ 0 and if there exists η > max(Re(λ(A))) such that Aη is not empty, then for all α ∈ Aη

the control law

u(t) := B⊤(BB⊤)−1(− Cw(t)− αx(t)
)

(4.19)

drives the resilient system (4.2) to the origin, and u ∈ F(U) for any w ∈ F(W).

Remark: In contrast with the driftless case of Theorem 9, having F ≻ 0 is not sufficient anymore for

resilience. Indeed, the existence of α ∈ Aη in Theorem 10 depends on the eigenvalues of matrix A having

sufficiently small real part.

Proof. When plugging control law (4.19) into (4.2), the dynamics become ẋ(t) = Ax(t) − αx(t). Then,

x(t) = eÃtx0 with Ã := A− αI. Since α > η > max(Re(λ(A))), matrix Ã is Hurwitz, which guarantees the

convergence of the state to the origin. Then, we need to verify whether u ∈ F(U) for all w ∈ F(W).

We first bound the state transition matrix: ∥eÃt∥ = ∥e(A−αI)t∥ = ∥eAte−αt∥ ≤ βeηte−αt = βe−γt, with

γ := α − η > 0. Now, we can proceed as in the proof of Theorem 9. Since F ≻ 0, we have P ≻ 0 and

∥u∥2L2
=
∫ T
0
ν(t)⊤Pν(t) dt, with ν(t) = Cw(t) + αeÃtx0. We expand the terms of this expression as in the

proof of Theorem 9:

ν(t)⊤Pν(t) = w(t)⊤C⊤PCw(t)︸ ︷︷ ︸
= T1

+2w(t)⊤C⊤PαeÃtx0︸ ︷︷ ︸
= T2

+α2x⊤0 e
Ã⊤tPeÃtx0︸ ︷︷ ︸
= T4

= T1 + 2T2 + T4.

Note that T1 is exactly the same as in (4.11), so that
∫ T
0
T1 dt ≤ λM according to (4.12). However, in the

terms T2 and T4 the scalar exponential e−αt of (4.11) has now been replaced by a matrix exponential eÃt.

We use Hölder’s inequality [95] to split the following integral:

∫ T

0

T2 dt ≤
∫ T

0

∣∣w(t)⊤(C⊤PαeÃtx0
)∣∣ dt ≤

√∫ T

0

∥w(t)∥2 dt

√∫ T

0

∥∥C⊤PαeÃtx0
∥∥2 dt

≤ ∥w∥L2
∥C⊤P∥α ∥x0∥

√∫ T

0

β2e−2γt dt ≤ αβ ∥C⊤P∥ ∥x0∥

√
1− e−2γT

2γ

≤ α√
α− η

β√
2
∥C⊤P∥ ∥x0∥,

where we used ∥w∥L2
≤ 1 since w ∈ F(W). For the term T4, we have∫ T

0

T4 dt ≤ α2∥x0∥2∥P∥
∫ T

0

β2e−2γt dt = α2∥x0∥2∥P∥β2

(
1− e−2γT

2γ

)
≤ α2

α− η

β2

2
∥P∥∥x0∥2
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Then,

∥u∥2L2
≤ λM +

α√
α− η

√
2β∥C⊤P∥∥x0∥+

α2

α− η

β2

2
∥P∥∥x0∥2.

Since we assumed that α ∈ Aη, we have ∥u∥L2
≤ 1 according to (4.18). Hence, u ∈ F(U).

Note that the set Aη depends on ∥x0∥. Therefore, the further away the initial state is, the less instability

can be counteracted by the control law. From Theorem 10 we can easily derive a sufficient condition for

resilience and confirm our intuition about stable systems.

Corollary 2: If A is Hurwitz and B̄ is p-resilient, then the system ẋ = Ax+ B̄u is also p-resilient.

Proof. Since B̄ is p-resilient, we can lose p actuators and create F ≻ 0. For a target T , set A has a maximum

α∗. Since A is Hurwitz, α∗ > 0 > max(Re(λ(A))). Thus, the control law (4.10) drives the state to T , the

system is p-resilient.

4.6 Numerical example

To validate our theory, we consider the ADMIRE fighter jet model developed by the Swedish Defense Research

Agency [106] and used as an application case in several control frameworks [107], [108]. We explore three

different scenarios featuring the fighter jet. First, we investigate the resilience of the simplified model used in

[107]. We also use this model as a benchmark to compare our approach with a robust control method. We

finally study the resilience of a more advanced driftless dynamics model of the aircraft.

Figure 4.1: The ADMIRE fighter jet model. Image modified from [108].

4.6.1 Resilience of a fighter jet

We consider only four of the actuators of the jet: the canard, the left and right elevons and the rudder, as

depicted on Figure 4.1. With these control surfaces, the pilot can directly affect the angular acceleration in

roll, pitch and yaw.

The nominal linearized dynamics of the jet established in [107] are ẋ(t) = Ax(t) + B̄ū(t), with the state
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vector x gathering the angular velocities in roll, pitch and yaw (rad/s):

x =

pq
r

 A =

−0.997 0 0.618

0 −0.506 0

−0.094 0 −0.213

 B̄ =

 0 −4.242 4.242 1.487

1.653 −1.274 −1.274 0.002

0 −0.281 0.281 −0.882

 .
Note that the system is stable since the eigenvalues of A have negative real parts. The inputs of the system

are the deflections of the control surfaces: uc for the canard wings, ure and ule for the right and left elevons,

and ur for the rudder. They are mechanically constrained:

u =
(
uc, ure, ule, ur

)
with uc ∈ [−25, 55]

π

180
, and ure, ule, ur ∈ [−30, 30]

π

180
. (4.20)

Consider the scenario in which, after sustaining damage (e.g., during air combat), one of the control

surfaces of the fighter jet stops responding to the commands. This surface is now producing undesirable

inputs. The pilot wants to minimize the aircraft roll, pitch and yaw rates, so the target is a ball of radius 0.1

centered around the origin, x = 0.

By looking at the matrix B̄ we can build our intuition on the resilience of the system. The first column

represents the effect of the canard and only modifies the pitch rate of the aircraft. This actuator can be

counteracted by the combined actions of both elevons, because 1.2735 + 1.2735 > 1.6532. The elevons can

counteract each other in terms of roll but doing so would induce a high pitching moment that cannot be

counteracted. The yawing moment produced by the rudder cannot be counteracted by the other actuators:

0.8823 > 0.2805 + 0.2805. Therefore, our intuition states that the fighter jet is only resilient to the loss of

control authority over the canard.

We check whether the matrix F = BB⊤ − CC⊤ ≻ 0 for each of the four possible actuator losses. Table

4.1 gathers the minimal eigenvalues of F for the four cases. As predicted by our intuition, the jet is only

resilient to the loss of control authority over the canard.

Table 4.1: Minimal eigenvalue of F for each actuator losses

Loss of control of: Canards Right elevon Left elevon Rudder

minλ(F ) 0.51 -8.5 -8.5 -1.0

We study more in-depth the loss of control over the canard with Theorem 10. We reuse the notations

employed in the proof and after some calculations we obtain: λM = 0.8426 < 1, max(Re(λ(A))) = −0.259 <

α∗, so the control law (4.19) should work.

We simulate our system on MATLAB with ode45 on the time interval [0, 25]. We generate w as a stochastic

signal between the bounds of uc defined in (4.20), i.e., w(t) ∈ [−25, 55] π180 for t ∈ [0, 25]. If ∥w∥L2 > 1, we

divide w by its L2 norm so that once normalized, ∥w∥L2 = 1. If instead we initially had ∥w∥L2 ≤ 1, then we

keep w as is. In order to respect the constraints (4.20) we add a saturation to the control law (4.19) and to

the LQR feedback control law uLQR = −Kx that we use as a reference. On MATLAB we obtain

K =

−0.5825 −0.5358 −0.1659

0.5826 −0.5360 0.1653

0.2198 0.0007 −0.7564

 , with Q =

1 0 0

0 1 0

0 0 1

 , and R = 1.

As predicted, the state converges exponentially from x0 = (1, 1, 1) rad/s to the origin, as shown by the
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blue curve in Figure 4.2(a). With the LQR feedback unaware of the undesirable input, the state does not

converge to the origin, as shown in red in Figure 4.2(a). As can be seen on Figure 4.2(b), the undesirable

input has a high variation and an amplitude non-negligible compared to the controlled inputs. It is not

reaching its upper and lower bound because of the L2 normalization we operated.
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Figure 4.2: State evolution with the two controllers for undesirable canard inputs.
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Figure 4.3: Right and left elevons inputs for the two controllers.

The control strategies employed by our two controllers are very different, as illustrated by the differences

between Figure 4.3(a) and 4.3(b), and between Figure 4.4(a) and 4.4(b). The LQR input is initially saturated

as can be seen on Figures 4.3(b) and 4.4(b).

If the pilot loses control authority over any one of the elevons, then F is not positive definite, but BB⊤ is

invertible. The control law (4.19) is still well-defined, so it can be implemented, but for some w ∈ F(W) the

control is not admissible: uw /∈ F(U). If the pilot loses control of the rudder, BB⊤ is not invertible, so the

control law (4.19) is not well-defined. The jet cannot be guaranteed to be able to reach the desired target.
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Figure 4.4: Rudder inputs for the two controllers.

4.6.2 Comparison with robust control

To illustrate the strength of our approach in the considered scenario, we compare our results with those of

classical robust control.

Let us first recall the differences in assumptions between robust control and resilient reachability. A

control law is said to be robust if it drives the state to the target whatever the disturbance is, i.e., there

exists a control law u such that for all undesirable input w, we have x(T ) ∈ T . On the other hand, resilient

reachability considers a controller aware of the undesirable input, i.e., for all w, there exists a control law uw

such that x(T ) ∈ T .

In our setting, the undesirable input is produced by an actuator belonging to the system. With sensors

measuring the output of each actuators and a fault-detection mechanism, it is reasonable to assume that w

can be measured. Then, the resilient controller has access to more information than a robust controller, and

should perform better.

We choose the robust control approach developed in [42]. Its objective is to approximate the closed-loop

reach set X [T ] with internal and external ellipsoids. The reach set gathers the states xgoal ∈ Rn for each of

which there exists a control law such that, whatever the undesirable input is, x(T ) ∈ B(xgoal, µ) for a certain

radius µ ≥ 0. The comparison criteria between our approach and that of [42] will be the size of the smallest

target ball guaranteed to be reached, i.e., µ. The application case is the ADMIRE model with drift studied

in the previous subsection 4.6.1. We assume that the pilot loses control authority over the canards.

The resilient inputs have L2 bounds. However, the robust control inputs u must be bounded by an

ellipsoid. To make the comparison as fair as possible, we choose the maximal ellipsoid within the actuators

range (4.20).

The disturbance ellipsoid is W = E(wc, Q), with its center wc := 1
2 (wmax + wmin). The disturbance

bounds wmin and wmax are the mechanical bounds of the uncontrolled actuator defined in (4.20). We consider

loss of control over only one actuator. Thus, Q is a scalar, so Q(w−wc)
2 ≤ 1 and wmin ≤ w ≤ wmax. Hence,

Q = 4
(wmax−wmin)

2 .

Defining the control ellipsoid is more complicated. To have a fair comparison with the results of our

paper, we would need to enforce L2 bounds on the inputs. However, this is not possible in the framework of
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[42]: it allows only for time-invariant ellipsoidal sets of admissible control inputs. Let us find a compromise.

We start from the bounds ∥u∥L2 ≤ 1 and ∥w∥L2 ≤ 1. So, we want to enforce∫ T

0

∥u(t)∥2dt ≤ 1 and

∫ T

0

∥w(t)∥2dt ≤ 1,

which can be done by choosing ∥u(t)∥2, ∥w(t)∥2 ≤ 1
T for all t ∈ [0, T ]. What matters here is the fact that

∥u(t)∥ and ∥w(t)∥ have the same bound. Therefore, we choose to limit each input to the smallest of the two

intervals [wmin, wmax] and the interval from (4.20). The control ellipsoid is then E
(
uc, P

)
, with its center

uc :=
1
2 (umax + umin) and a diagonal shape matrix P with Pii = min

{
22

(ui
max−ui

min)
2 , Q

}
.

Now that we have defined our ellipsoidal input sets, we need to calculate the ellipsoidal bounds on the on

the reachable set E
(
x−(T ), X−(T )

)
⊆ X [T ]. The center x−(t) of each of the internal ellipsoid follows the

dynamics

ẋ− = Ax− +Buc + Cwc, x−(0) = x0 ∈ Rn, (4.21)

where uc and wc are the respective centers of the control ellipsoid and of the disturbance ellipsoid. The

differential equation for the shape matrix X−(t) of the internal ellipsoid [42] is

Ẋ− = AX−+X−A
⊤+
√
X−S1(t)B

√
P+

√
PB⊤S1(t)

√
X⊤

−+µ
(√

X−S2(t)+S2(t)
√
X⊤

−

)
−π(t)X−−

CQC⊤√
π(t)

,

(4.22)

with X−(0) = X0. The functions π, S1 and S2 are defined as follows for a given vector l ∈ Rn:

l(t) := eA
⊤tl π(t) :=

√
l(t)⊤CQC⊤l(t)

S1(t)B
√
P :=

√
l(t)⊤BPB⊤l(t)
l(t)⊤X−l(t)

√
X− S2(t) := ∥l(t)∥√

l(t)⊤X−l(t)

√
X−.

We now need to calculate the radius µ of the smallest robustly reachable target. We compute only the

tight ellipsoidal internal approximation of the closed-loop reachable set: E
(
x−(T ), X−(T )

)
⊆ X [T ]. Indeed,

if a state belongs to the internal ellipsoid it is guaranteed to be robustly reachable, because included in the

reachable set. We compute the trajectory of the center of the ellipsoid x−(t) with (4.21), and the evolution

of the shape matrix X−(t) of the ellipsoid with (4.22) and (4.23). When the radius µ of the target ball is too

small for the target to be reached, then the shape matrix X− is not positive definite. We investigated for the

smallest µ such that X−(T ) ≻ 0, and found µ = 5.9. Therefore, the smallest target ball the robust method

guarantees to reach has a radius of 5.9. The initial state x0 = (1, 1, 1) was already inside that ball. Thus,

the robust control cannot even guarantee that the state will get closer to the target than its initial state.

On the other hand, we know that the jet is resilient to the loss of control over the canards. Therefore, a

target ball of any size is resiliently reachable. By having access to the undesirable input, a controller ensuring

resilient reachability is then more effective than a robust controller.

4.6.3 A driftless model

The aircraft model used as previous example is very convenient for our study because of the linearization

and the overactuation. However, to render the dynamics driftless, we needed a more in-depth analysis of the

model. We obtained the original simulation code of the ADMIRE model from [109].

For our purposes, we removed the states representing the sensor dynamics and those not directly affected
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by the controls from the initial 28-states model [106]. We also removed four of the sixteen inputs as they are

negligible compared to the other inputs.

The simulation generates a pair of matrices A and B̄ following the nominal dynamics (4.1). The effect

of the matrix A is negligible compared to B̄, when considering the states x = (Vt, q, r), i.e., the jet speed,

pitch and yaw rates. Thus, we approximate their dynamics by a driftless system, setting A = 0.

Since the jet has a single engine, it is not resilient to its loss. For our study, we assume a guaranteed

authority over the thrust command, except for the afterburners. In the model the thrust command actuator

also encompasses the afterburners. Since they account for only 20% of the thrust, the corresponding column

in B̄ is scaled by 20%. At Mach 0.75 and altitude 3000 m, the control matrix is

B̄⊤ =



−2.7 7.1 −1.9

−2.7 7.1 1.9

−1.0 −7.7 −1.1

−1.8 −13 −3.0

−1.8 −13 3.0

−1.0 −7.7 1.1

−1.9 0.0 −11

−0.8 −0.5 0

−4.3 −0.7 0

1.2 0 0

−71 1.2 −710

−113 −882 0



right canard,

left canard,

right outboard elevon,

right inboard elevon,

left inboard elevon,

left outboard elevon,

rudder,

leading edge flaps,

landing gear,

afterburner,

yaw thrust vectoring,

pitch thrust vectoring.

Each row of B̄⊤ represents the effect of the actuator written on the right. All the values of the inputs are in

radians except for the landing gear and the afterburner which are between 0 and 1. This control matrix is

not 1-resilient, because the thrust vectoring inputs are several orders of magnitude greater than any of the

other inputs. For the same reason, the system is resilient to the loss of any one of the other ten actuators.

Simply removing thrust vectoring capabilities does not render the system 1-resilient; the control of the

yaw rate would then primarily depend on the rudder, hence rendering the aircraft not resilient to the loss of

the rudder.

Instead of removing the thrust vectoring actuators, if their range of motion is restricted to 1.4% of their

current range, then B̄ becomes resilient. Indeed, the thrust vectoring actuators can now be counteracted by

the rudder and the elevons. Since we reduced the magnitude of two columns of B̄, we also had to verify that

the driftless hypothesis was still valid by comparing the effects of A and B̄.

We showed how to make the fighter jet resilient in terms of speed, pitch and yaw rates, by scaling down

thrust vectoring and having a guaranteed thrust. The resilience improvement by reducing the thrust vectoring

might seem counterintuitive. Yet, it is explained by the fact that these actuators were too powerful to be

balanced if they became uncontrolled. While the new system is resilient, its capabilities have been reduced.

For instance, reaching a target (while undamaged) would take significantly more time for the new resilient

system than for the old one.

The resilience analysis developed for this fighter jet is affected by several limitations of the current state

of our theory. The first and obvious limitation comes from the driftless hypothesis but is justified here by the

difference of magnitude between the drift and controlled dynamics. The most limiting hypothesis is that the

controls are bounded by a L2 norm. Indeed, each actuator is independent of the others so a joint bound may
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not be appropriate. The structure of U with admissible inputs satisfying ∥u∥L2 ≤ 1 also assumes that each

actuator has a symmetric range of functioning, which makes sense for the rudder, for instance, but not for

the landing gear which can only be stored or deployed.

4.7 Summary

This chapter introduced the notion of resilient systems that can withstand the loss of control over any single

or multiple actuators and still guarantee to drive the state to its target. We determined the minimal number

of actuators required to design a 1-resilient system. We highlighted the increased complexity arising from

higher degrees of resilience, which prevent calculations of the minimal overactuation required for p-resilience,

p ≥ 2. We then focused on the synthesis of a resilient control law for linear systems. Eventually, we illustrated

our results on a fighter jet model.
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Chapter 5

Quantitative Resilience of Generalized

Integrators

5.1 Introduction

This chapter constitutes the first step of resilience theory for linear systems with component bounded inputs

and relies on our works [32], [38]. After a partial loss of control authority over actuators, a target is resiliently

reachable if for any undesirable inputs of the malfunctioning actuators there exists a control driving the state

to the target [31]. However, the malfunctioning system might need considerably more time to reach its target

compared to the initial system. To measure the delays caused by the loss of control authority, we will define

the notion of quantitative resilience. Homonymous concepts have been previously developed for nuclear power

plants [57], water infrastructure systems [56] and systems engineering [58] but were limited to their specific

applications.

We formulate quantitative resilience as the maximal ratio over all targets of the minimal reach times for

the initial and malfunctioning systems. This formulation leads to a nonlinear minimax optimization problem

with an infinite number of constraints. Our main contribution is to reduce the quantitative resilience of

systems with multiple integrators to a linear optimization problem. To do so we combine two optimization

results designed specifically for this application [36] and established in Chapter 6 with the theorems of [72],

[78] stating the existence of time-optimal controls.

The contributions of this chapter are twofold. First, we propose an efficient method to compute the

quantitative resilience of linear systems with multiple integrators and nonsymmetric inputs by simplifying

a nonlinear problem of four nested optimizations into a single linear optimization problem. Second, we

establish necessary and sufficient conditions to verify if a system is resilient to the loss of control over one of

its actuators.

This chapter is organized as follows. Section 5.2 introduces preliminary notions on resilience. We calculate

the optimal reach times for the initial and malfunctioning systems in Section 5.3. The pinnacle of this work

is the efficient method to compute quantitative resilience in Section 5.4. This metric also allows to assess

whether a system is resilient, as detailed in Section 5.5. We study the quantitative resilience of systems with

multiple integrators in Section 5.6 before applying our theory to an octocopter in Section 5.7.
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5.2 Preliminaries and problem statement

The control of a physical system usually involves steering its position with inputs only affecting its acceleration

[110]. With these systems in mind, we focus on generalized kth order integrators in Rn, i.e.,

x(k)(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0, x(l)(0) = 0, (5.1)

for all l ∈ [[1, k − 1]] and k ∈ N. Matrix B̄ ∈ Rn×(m+p) is constant. The control set is the hyperrectangle

Ū :=
∏m+p
i=1

[
ūmini , ūmaxi

]
⊆ Rm+p, with ū ∈ F(Ū).

After a malfunction, the system loses control authority over p of its m+ p actuators. We then split B̄ into

B and C, Ū into U and W, and ū into the remaining control inputs u ∈ F(U) and the undesirable inputs

w ∈ F(W). Then, the initial conditions are the same as in (5.1) but the dynamics become

x(k)(t) = Bu(t) + Cw(t), u(t) ∈ U :=

m∏
i=1

[
umini , umaxi

]
, w(t) ∈ W :=

p∏
i=1

[
wmini , wmaxi

]
. (5.2)

We now recall the definition of resilience from Chapter 4.

Definition 6: System (5.1) is resilient to the loss of p of its actuators corresponding to the matrix C as

above if for all undesirable inputs w ∈ F(W) and all target xgoal ∈ Rn there exists a control uw ∈ F(U) and
a time T such that the state of the system (5.2) reaches the target at time T , i.e., x(T ) = xgoal.

While a resilient system is by definition capable of reaching any target after a partial loss of control

authority, the malfunctioning system might be considerably slower than the initial system to reach the

same target. We introduce the following two reach times for the target xgoal ∈ Rn and the target distance

d := xgoal − x0 ∈ Rn.

Definition 7: The nominal reach time of order k T ∗
k,N , is the shortest time required for the state x of (5.1)

to reach the target xgoal under admissible control ū ∈ F(Ū):

T ∗
k,N (d) := inf

ū∈F(Ū)

{
T ≥ 0 : x(T )− x0 = d

}
. (5.3)

Definition 8: The malfunctioning reach time of order k T ∗
k,M , is the shortest time required for the state x of

(5.2) to reach the target xgoal under admissible control u ∈ F(U) when the undesirable input w ∈ F(W) is

chosen to make that time the longest:

T ∗
k,M (d) := sup

w∈F(W)

{
inf

u∈F(U)

{
T ≥ 0 : x(T )− x0 = d

}}
. (5.4)

The causality issue arising from (5.4) is discussed at the end of this section. By definition, if the system

is controllable, then T ∗
k,N (d) is finite for all d ∈ Rn, and if it is resilient, then T ∗

k,M (d) is also finite. The

malfunctioning system (5.2) can take up to
T∗
k,M (d)

T∗
k,N (d) times longer than the initial system (5.1) to reach the

target d+ x0.

Definition 9: The quantitative resilience of order k of system (5.2) is

rk,q := inf
d∈Rn

∗

T ∗
k,N (d)

T ∗
k,M (d)

. (5.5)
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For a resilient system, rk,q ∈ (0, 1]. The closer rk,q is to 1, the smaller is the loss of performance caused

by the malfunction. We are now led to our problem of interest.

Problem 9: How to calculate efficiently rk,q?

Indeed, a naive computation of rk,q requires solving four nested optimization problems whose constraint

sets are Rn∗ and three infinite-dimensional function spaces. A brute force approach to this problem is doomed

to fail.

We will explore thoroughly the simple case k = 1 in the following sections and generalize their results to

the case k ∈ N in Section 5.6. For k = 1, systems (5.1) and (5.2) simplify into

ẋ(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0 ∈ Rn, (5.6)

ẋ(t) = Bu(t) + Cw(t), u(t) ∈ U , w(t) ∈ W. (5.7)

For brevity, in the case k = 1 we lose the subscript 1 and write the nominal reach time T ∗
N = T ∗

1,N as

T ∗
N (d) := inf

ū∈F(Ū)

{
T ≥ 0 :

∫ T

0

B̄ū(t) dt = d
}
, (5.8)

and the malfunctioning reach time T ∗
M = T ∗

1,M as

T ∗
M (d) := sup

w∈F(W)

{
inf

u∈F(U)

{
T ≥ 0 :

∫ T

0

[
Bu(t) + Cw(t)

]
dt = d

}}
. (5.9)

The ratio of reach times is t(d) := T ∗
M (d)/T ∗

N (d). The quantitative resilience rq of a system following (5.7) is

then

rq :=
1

sup
d∈Rn

∗

t(d)
= inf
d∈Rn

∗

T ∗
N (d)

T ∗
M (d)

= r1,q. (5.10)

We now discuss the information setting in the malfunctioning system. The resilience framework of this

dissertation assumes that u has only access to the past and current values of w, but not to their future. Then,

the optimal control u∗ in (5.9) cannot anticipate a truly random undesirable input w. Hence, this strategy is

not likely to result in the global time-optimal trajectory of Definition 8.

In fact, there would be no single obvious choice for u∗
(
t, w(t)

)
, rendering T ∗

M ill-defined and certainly

not time-optimal, whereas T ∗
N is time-optimal. In this case, our concept of quantitative resilience becomes

meaningless. The work [86] states that to calculate u∗ without future knowledge of w∗ the only technique is

to solve the intractable Isaac’s equation. Thus, the paper [86] derives only suboptimal solutions and concludes

that its practical contribution is minimal.

Instead, we follow [30] where the inputs u∗ and w∗ are both chosen to make the transfer from x0 to xgoal

time-optimal in the sense of Definition 8. The controller knows that w∗ will be chosen to make T ∗
M the

longest. Thus, u∗ is chosen to react optimally to this worst undesirable input. Then, w∗ is chosen, and to

make T ∗
M the longest, it is the same as the controller had predicted. Hence, from an outside perspective it

looks as if the controller knew w∗ in advance, as reflected by (5.4).

We will prove in the following sections that with this information setting w∗ is constant. Then, the

controller can more easily and more reasonably predict what is the worst w∗ and build the adequate u∗. With

these two input signals, T ∗
M is time-optimal in the sense of Definition 8 and can be meaningfully compared

with T ∗
N to define the quantitative resilience of control systems.
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5.3 Optimal reach times

We start with the dynamical system (5.6) to calculate the nominal reach time T ∗
N of (5.8). We easily show in

Lemma 1 of Appendix 5.8, that if system (5.6) is controllable, the optimal control ū∗ of (5.8) exists and is

constant:

T ∗
N (d) = min

ū∈ Ū

{
T ≥ 0 : B̄ū T = d

}
. (5.11)

Since the input set Ū is bounded, the controllability of system (5.6) is equivalent to rank(B̄) = n and

0 ∈ int(Ū) [91]. The multiplication of variables ū and T makes (5.11) a bilinear optimization problem. For

easier computation, we solve instead the linear optimization T ∗
N (d) = 1/max

ū∈ Ū

{
λ : B̄ū = λd

}
.

We now study the malfunctioning system (5.7) to compute the malfunctioning reach time T ∗
M of (5.9).

As above, we easily prove in Lemma 2 of Appendix 5.8 that if system (5.7) is resilient, the optimal control

u∗(w) of (5.9) exists and is constant for any undesirable input w ∈ F(W):

T ∗
M (d) = sup

w∈F(W)

{
min

u∗(w)∈U

{
T : Bu∗(w)T +

∫ T

0

Cw(t) dt = d

}}
. (5.12)

Tackling the supremum in (5.12) requires a different approach.

Proposition 11: If system (5.7) is resilient, then for all d ∈ Rn∗ the supremum T ∗
M (d) of (5.9) is a maximum

achieved by a constant undesirable input w∗ ∈ W.

Proof. For w ∈ F(W), let

wc :=

∫ TM (w,d)

0

w(t)

TM (w, d)
dt,

with TM defined in (5.26). Then, for i ∈ [[1, p]] we have wmini ≤ wi(t) ≤ wmaxi . Integrating yields

wmini ≤ wci ≤ wmaxi , so wc ∈ W. Then,

∫ TM (w,d)

0

Cw(t)dt = CwcTM (w, d) = d−Bu∗(w)TM (w, d).

Conversely, note that for all wc ∈ W and T > 0, we can define w(t) := 1
T w

c for t ∈ [0, T ] such that∫ T
0
Cw(t) dt = Cwc and w ∈ F(W). Thus, the constraint space of the supremum of (5.9) can be restricted

to constant inputs in W.

We define the function φ(w) := Bu∗(w) + Cw for w ∈ W. When applying the constant inputs w and

u∗(w), dynamics (5.7) become ẋ = φ(w). Because
(
Bu∗(w) + Cw

)
TM (w, d) = d, we have φ(w) = 1

TM (w,d)d

and φ is continuous in w according to Lemma 3 in Appendix 5.8. Set W is compact and x0 ∈ Rn is fixed.

Then, Theorem 1 of [72] states that AW :=
{
(x1, T ) :

∫ T
0
φ(w)dt = x1 − x0, for w ∈ W

}
is compact. Note

that T ∗
M (d) = sup

{
T : (xgoal, T ) ∈ AW

}
is the supremum of a continuous function over the compact set AW ,

so T ∗
M (d) is a maximum achieved on W.

Then, the malfunctioning reach time becomes

T ∗
M (d) = max

w∈W

{
min
u∈U

{
T ≥ 0 :

(
Bu+ Cw

)
T = d

}}
. (5.13)

We will show that the maximum of (5.13) is achieved by an extreme undesirable input, i.e., at the set of

vertices of W, denoted by V. However, we cannot directly apply the bang-bang principle, as it has been
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mostly derived for systems with a linear dependency on the input [67], [78], [111], while φ introduced in

Proposition 11 is not linear in w. The works [72], [112], [113] consider a nonlinear φ, but they require

conditions that are not satisfied in our case. Thus, we need a new optimization result, namely Theorem 2.1

from [36], which applies to polytopes.

Definition 10: A polytope in Rn is a compact intersection of finitely many half-spaces.

We define X :=
{
Cw : w ∈ W

}
and Y :=

{
Bu : u ∈ U

}
. Since U and W are polytopes, so are X and Y

[114].

Proposition 12: If system (5.7) is resilient, then dimY = n and −X ⊆ int(Y).

Proof. Following Proposition 11 we know that for all x ∈ X and all d0 ∈ Rn there exist y ∈ Y and T ≥ 0

such that (x+ y)T = d0. Since d0 can be freely chosen in Rn, we must have dimY = n.

Take d0 = x ∈ X , x ̸= 0. Then, there exists y1 ∈ Y and T1 > 0 such that (x+ y1)T1 = x. Hence, λ1x ∈ Y
with λ1 := −1 + 1/T1. Now take d0 = −x. Then, there exists y2 ∈ Y and T2 > 0 such that (x+ y2)T2 = −x.
Hence, λ2x ∈ Y with λ2 := −1− 1/T2. Since λ2 ≤ −1 ≤ λ1 and Y is convex, we have −x ∈ Y.

If x = 0, this process fails because we would get T = 0 when taking d = 0. Instead, take d0 ∈ S. Then
there exist T > 0 and y ∈ Y such that yT = d0. Repeating the same for −d0 and using the convexity of Y as

in the previous paragraph, we obtain 0 ∈ Y. Thus −X ⊆ Y.

Assume that there exists −x1 ∈ −X ∩ ∂Y . For d = −x1, TM (x1,−x1) = min
y∈Y

{
T ≥ 0 : (x1 + y)T = −x1

}
,

with TM introduced in (5.26). Since T ≥ 0, the optimal y (called y∗) must make x1 + y positively collinear

with −x1. Thus, y∗ is positively collinear with −x1 and the largest it can be is y∗ = −x1 because −x1 ∈ ∂Y .

Then, the constraint in TM (x1,−x1) is 0T = −x1. The lack of solution contradicts the resilience of the

system. Thus, −X ∩ ∂Y = ∅, i.e., −X ⊆ int(Y).

We now prove that the maximum of (5.13) is achieved on V.

Proposition 13: If system (5.7) is resilient, then for all d ∈ Rn∗ , the maximum of (5.13) is achieved with a

constant input w∗ ∈ V.

Proof. Replacing 1
T by λ in (5.13) leads to T ∗

M (d) = 1/min
x∈X

{
max
y∈Y

{
λ > 0 : x + y = λd

}}
. Since λ ≥ 0, we

write λ = |λ| = ∥λd∥/∥d∥ = ∥x+ y∥/∥d∥. Then,

T ∗
M (d) =

∥d∥
min
x∈X

{
max
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}} . (5.14)

Following Proposition 12, we can apply Theorem 2.1 of [36] and conclude that the argument of the minimum

in (5.14) is at a vertex x∗ of X . Since the transformation between W and X is linear, x∗ = Cv with v ∈ V a

vertex of W [114]. Therefore, the maximum of (5.13) is achieved on V.

We have then reduced the outer constraint set of (5.9) from an infinite-dimensional function set F(W) to

a finite set V of cardinality 2p with p the number of malfunctioning actuators. Then,

T ∗
M (d) = max

w∈V

{
min
u∈U

{
T ≥ 0 :

(
Bu+ Cw

)
T = d

}}
. (5.15)

Because u is chosen to counteract w and make Bu+Cw collinear with d ∈ Rn, while w is chosen freely in W ,

the minimum of (5.15) cannot be restricted to the vertices of U . We will now prove that both reach times

are linear in the target distance.
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Proposition 14: For any d ∈ Rn and λ ≥ 0 we have T ∗
N (λd) = λ T ∗

N (d) and T ∗
M (λd) = λ T ∗

M (d).

Proof. The case λ = 0 is trivial since T ∗
N (0) = T ∗

M (0) = 0, so consider λ > 0. The nominal reach time for d is

T ∗
N (d), so there exists ūd ∈ Ū such that B̄ūdT

∗
N (d) = d. Then, B̄ ūd λT

∗
N (d) = λd. The optimality of T ∗

N (λd)

to reach λd leads to T ∗
N (λd) ≤ λT ∗

N (d).

Similarly, there exists ūλd ∈ Ū such that B̄ūλdT
∗
N (λd) = λd, so B̄ ūλd

T∗
N (λd)
λ = d. The optimality of

T ∗
N (d) to reach d yields T ∗

N (d) ≤ T∗
N (λd)
λ . Thus, λT ∗

N (d) ≤ T ∗
N (λd).

A similar proof does not work for T ∗
M because of the minimax structure of (5.15).

For d ∈ Rn∗ and w ∈ W, we define x = Cw and y∗(x, d) := arg min
y ∈Y

{
T ≥ 0 : (y + x)T = d

}
. Note that

Bu∗(w) + Cw = y∗(x, d) + x, with u∗ defined in Lemma 2. Then, with TM introduced in (5.26), we have(
Bu∗(w) +Cw

)
TM (w, d) = d, i.e., y∗(x, d) = 1

TM (w,d)d− x. For λ > 0, we define α(λ) := λ
TM (w,λd) −

1
TM (w,d) ,

such that y∗(x, λd)− y∗(x, d) = α(λ)d.

The polytope Y in Rn has a finite number of faces, so we can choose d ∈ Rn∗ not collinear with any face of

Y . Since Y is convex, the ray
{
y∗(x, d) + αd : α ∈ R

}
intersects with ∂Y at most twice. Since y∗(x, d) ∈ ∂Y ,

one intersection happens at α = 0. If there exists another intersection, it occurs for some α0 ̸= 0. Since

y∗(x, λd) ∈ ∂Y, we have y∗(x, d) + α(λ)d ∈ ∂Y. Then, α(λ) ∈ {0, α0} for all λ > 0.

According to Lemma 3, TM is continuous in d, so α is continuous in λ but its codomain is finite. Therefore,

α is constant and we know that α(1) = 0. So α is null for all λ > 0, leading to TM (w, λd) = λTM (w, d)

for all λ > 0 and d not collinear with any face of ∂Y. Since the dimension of each face of ∂Y is at most

n − 1 in Rn and TM is continuous in d, the homogeneity of TM holds on the whole of Rn. Note that

T ∗
M (d) = max

w∈W
TM (w, d). Thus, λT ∗

M (d) = T ∗
M (λd).

Combining the results obtained for the nominal and the malfunctioning dynamics, we can now evaluate

the quantitative resilience of the system.

5.4 Quantitative resilience

Focusing on the loss of control over a single actuator we will simplify tremendously the computation of rq

by noting that the effects of the undesirable inputs are the strongest along the direction described by the

malfunctioning actuator.

Theorem 11: If system (5.7) is resilient and C is a single column matrix, the ratio of reach times t(d) is

maximizing along C, i.e., max
d∈Rn

∗
t(d) = max

{
t(C), t(−C)

}
.

Proof. Using Proposition 14 we reduce the constraint set of (5.10) from Rn∗ to S. We use the same process

that yielded (5.14) but we start from (5.11) where we split B̄ into B and C:

1

T ∗
N (d)

= max
ū∈ Ū

{
λ : B̄ū = λd

}
= max
u∈U, w∈W

{
λ : Bu+Cw = λd

}
= max
x∈X , y ∈Y

{
∥y+x∥ : y+x ∈ R+d

}
. (5.16)

We can now gather (5.14) with d ∈ S and (5.16) into

t(d) =
T ∗
M (d)

T ∗
N (d)

=

max
x∈X , y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
min
x∈X

{
max
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}} .
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Because C is a single column, dimX = 1. Then, following Proposition 12 we can apply the Maximax Minimax

Quotient Theorem of [36] that states max
d∈ S

t(d) = max
{
t(C), t(−C)

}
.

Theorem 11 is the strongest result of this work as it solves the nonlinear fractional optimization of rq over

d ∈ S. Its proof is brief because all the heavy lifting is done in [36].

Since the sets U and W are not symmetric, in general t(C) ̸= t(−C). Thus, to calculate the quantita-

tive resilience rq we need to evaluate T ∗
N (±C) and T ∗

M (±C), i.e., solve four optimization problems. The

computation load can be halved with the following result.

Theorem 12: If system (5.7) is resilient and C is a single nonzero column, then we have rq = rmin, with

rmin := min
{
r(C), r(−C)

}
, r(C) := wmin+λ+

wmax+λ+ , r(−C) := wmax−λ−

wmin−λ− and λ± := max
υ ∈U

{
λ : Bυ = ±λC

}
.

Proof. Let ū ∈ Ū , u ∈ U and w ∈ W be the arguments of the optimization problems (5.11) and (5.15) for

d = C ̸= 0. We write ū = (uB , uC) ∈ U ×W. Then,

B̄ū T ∗
N (C) = BuB T

∗
N (C) + CuC T

∗
N (C) = C, and BuT ∗

M (C) + CwT ∗
M (C) = C. (5.17)

We consider the loss of a single actuator, thus W = [wmin, wmax] ⊆ R which makes CwT ∗
M (C) and CuCT

∗
N (C)

collinear with C. From Proposition 13, we know that w ∈ ∂W. Since w maximizes T ∗
M (C) in (5.17), we

obviously have w = wmin. On the contrary, uC is chosen to minimize T ∗
N (C) in (5.17), so uC = wmax.

According to (5.17), BuB and Bu are collinear with C, and they are chosen to minimize respectively

T ∗
N (C) and T ∗

M (C). Thus, u and uB are the vectors in U that maximize the norm of Bu and BuB and make

them positively collinear with C, i.e., u=uB =arg min
υ ∈U

{
τ : Bυτ = C

}
. Using λ = 1

τ we render this problem

linear:

λ+ = max
υ ∈U

{
λ : Bυ = λC

}
, and u = uB = argmax

υ ∈U

{
λ : Bυ = λC

}
.

By combining all the results, (5.17) simplifies into:

C(λ+ + wmax)T ∗
N (C) = C, and C(λ+ + wmin)T ∗

M (C) = C.

Since C is a nonzero column,
T ∗
N (C)

T ∗
M (C)

=
λ+ + wmin

λ+ + wmax
= r(C).

Following the same reasoning for d = −C, we obtain

C(−λ− + wmin)T ∗
N (C) = −C and C(−λ− + wmax

)
T ∗
M (C) = −C,

with λ− = max
υ ∈U

{
λ : Bυ = −λC

}
. Then,

1

t(−C)
=
T ∗
N (−C)
T ∗
M (−C)

=
wmax − λ−

wmin − λ−
= r(−C).

Following Theorem 11,

rq =
1

max{t(d) : d ∈ S}
= min

{
1

t(C)
,

1

t(−C)

}
= min

{
r(C), r(−C)

}
= rmin.
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We introduced quantitative resilience as the solution of four nonlinear nested optimization problems and

with Theorem 12 we reduced rq to the solution of two linear optimization problem. We can thus quickly

calculate the maximal delay caused by the loss of control of a given actuator.

5.5 Resilience conditions

So far, all our results need the system to be resilient. However, we know that verifying the resilience of a

system with inputs of finite energy is not an easy task [35], and thus we can assume it is not trivial either

with our component bounded inputs.

Proposition 15: A system following (5.6) is resilient to the loss of control over a column C if and only if it

is controllable and both T ∗
M (C) and T ∗

M (−C) are finite.

Proof. If system (5.6) is resilient, then it is controllable a fortiori and Proposition 11 yields T ∗
M (C) and

T ∗
M (−C) are finite.

On the other hand, assume that system (5.6) is controllable and max
{
T ∗
M (C), T ∗

M (−C)
}
is finite. Let

w ∈ W and d ∈ Rn∗ . By controllability of system (5.6), there exists ū ∈ Ū and λ > 0 such that B̄ū = λd. We

split B̄ into B and C, and ū into ud and wd. Then, ud ∈ U and B̄ū = Bud + Cwd = λd. In the case C = 0,

this equation yields Bud = λd = Bud + Cw, so the system is resilient.

For C ̸= 0, we will first show that for any w ∈ W we can find u ∈ U such that Bu+ Cw = 0. Because

T ∗
M (C) and T ∗

M (−C) are finite, TM (w,±C) is positive and finite for all w ∈ W = [wmin, wmax], with TM (·, ·)
defined in (5.26). Take w ∈ W. Then, there exist uw+ ∈ U and uw− ∈ U such that

(
Buw+ + Cw

)
TM (w,C) = C and

(
Buw− + Cw

)
TM (w,−C) = −C.

Define

α :=
TM (w,C)

TM (w,C) + TM (w,−C)
∈ (0, 1) and u := αuw+ + (1− α)uw−.

Then, u ∈ U because U is convex. Notice that

Bu+ Cw = α
(
Buw+ + Cw

)
+ (1− α)

(
Buw− + Cw

)
=

TM (w,C)

TM (w,C) + TM (w,−C)
C

TM (w,C)
+

TM (w,−C)
TM (w,C) + TM (w,−C)

−C
TM (w,−C)

= 0.

We want to make a convex combination of u and ud to build the desired control. If w ∈ ∂W the resulting

control will not be stronger than the adversary. So, we need to show that even if w is a little bit outside of

W we can still counteract it. Let

ε := min

(
1

2TM (wmin, C)
,

1

2TM (wmax,−C)

)
> 0.

Now take w′ ∈ (wmax, wmax + ε]. There exists u− ∈ U and u+ ∈ U such that

(
Bu+ + Cwmax

)
TM (wmax, C) = C and

(
Bu− + Cwmax

)
TM (wmax,−C) = −C.
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Then, we can define T+ > 0 such that

Bu+ + Cw′ = Bu+ + Cwmax + C(w′ − wmax) = C

(
1

TM (wmax, C)
+ w′ − wmax

)
=

C

T+
.

Since w′ − wmax ≤ 1
2TM (wmax,−C) , we can similarly define T− > 0 such that

Bu− + Cw′= −C
(

1

TM (wmax,−C)
− (w′ − wmax)

)
=

−C
T− .

We take α = T+

T++T− ∈ (0, 1) which yields u′ = αu+ + (1− α)u− ∈ U by convexity. Then, Bu′ + Cw′ = 0.

With a similar approach we can build another u′ to counteract any w′ ∈ [wmin − ε, wmin).

Since W is convex, w ∈ W and wd ∈ W, we can take w′ ∈ [wmin − ε, wmax + ε] such that there exists

γ ∈ (0, 1) for which w = γwd + (1− γ)w′. We build u′ ∈ U as above to make Bu′ +Cw′ = 0. By convexity of

U , u := γud + (1− γ)u′ ∈ U . Then,

Bu+ Cw = γ
(
Bud + Cwd

)
+ (1− γ)

(
Bu′ + Cw′) = γλd.

Since γ > 0, we have γλ > 0 making the system resilient to the loss of column C.

The intuition behind Proposition 15 is that a resilient system has two properties: the ability to reach any

state prior to a malfunction, i.e., controllability, and the ability to do so after the malfunction despite the

worst undesirable inputs, i.e., T ∗
M (±C) is finite. We can now derive resilience from a computation, making it

easier to verify.

Corollary 3: System (5.6) is resilient to the loss of control over a nonzero column C if and only if it is

controllable, and r(C) and r(−C) from Theorem 12 are in (0, 1].

Proof. If C = 0, the controllability is equivalent to resilience and r(0) = 1. If C ≠ 0 and system (5.6) is

resilient, then by Proposition 15, both T ∗
M (±C) are finite and system (5.6) is controllable, so both T ∗

N (±C)
are finite too. Trivially T ∗

N ≤ T ∗
M , so we have both r(C) =

T∗
N (C)
T∗
M (C) ∈ (0, 1] and r(−C) = T∗

N (−C)
T∗
M (−C) ∈ (0, 1]

according to Theorem 12.

On the other hand, assume that the system is controllable and that wmin+λ+

wmax+λ+ and wmax−λ−

wmin−λ− ∈ (0, 1]. If

wmin + λ+ < 0, then wmax + λ+ ≤ wmin + λ+ because r(C) ∈ (0, 1]. This leads to the impossible conclusion

that wmax ≤ wmin. If wmin + λ+ = 0, then r(C) = 0. Therefore, wmin + λ+ > 0. Let u ∈ U such that

Bu = λ+C. For w ∈ W, we define Tw := 1
w+λ+ , so that (Bu+ Cw)Tw = C. Note that Tw is positive and

finite because w + λ+ ≥ wmin + λ+ > 0. Since

T ∗
M (C) ≤ max

w∈W
Tw =

1

wmin + λ+
,

T ∗
M (C) is finite.

The same reasoning holds for r(−C). We can show that wmax − λ− < 0 and that Tw := 1
λ−−w > 0 for all

w ∈ W. With u ∈ U such that Bu = −λ−C we have (Bu+ Cw)Tw = −C. Then,

T ∗
M (−C) ≤ max

w∈W
Tw =

1

λ− − wmax
,

so T ∗
M (−C) is finite. Then, Proposition 15 states that the system is resilient.
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We now have all the tools to assess the quantitative resilience of a driftless system. If rank(B̄) = n and

0 ∈ int(Ū), then system (5.6) is controllable [91]. After computing the ratios r(±C), Corollary 3 states

whether the system is resilient. If it is, then rq = rmin by Theorem 12, otherwise rq = 0. We summarize this

process in Algorithm 1.

Algorithm 1: Resilience algorithm for system (5.6)

Data: A column C of B̄, r(C) and r(−C) from Theorem 12

Result: rq

if rank(B̄) = n and 0 ∈ int(Ū) then
# system (5.6) is controllable

if r+C ∈ (0, 1] and r−C ∈ (0, 1] then

rq = min{r+C , r
−
C} # resilient to loss of C

else
rq = 0 # not resilient to loss of C

end

else
rq = 0 # not resilient to any loss

end

5.6 Systems with multiple integrators

We can now extend the results obtained for driftless systems to generalized higher-order integrators.

Proposition 16: If system (5.6) is controllable, then the infimum of (5.3) is achieved with the same constant

control input ū∗ ∈ Ū as T ∗
N in (5.8), and T ∗

k,N (d) = k
√
k! T ∗

N (d) for all d ∈ Rn.

Proof. If d = 0, then T ∗
k,N (d) = 0 = T ∗

N (d), so the result holds. Let d ̸= 0. By assumption, system

ẏ(t) = B̄ū(t) with y(0) = 0 is controllable. Following Lemma 1 there exists a constant optimal control ū ∈ Ū
such that y

(
T ∗
N (d)

)
− y(0) = d = B̄ūT ∗

N (d), with T ∗
N (d) > 0. Then, applying the control input ū to (5.1) on

the time interval [0, t1] leads to

x(t1)− x0 =

∫ t1

0

∫ t2

0

. . .

∫ tk

0

x(k)(tk+1) dtk+1 . . . dt2 =

∫ t1

0

∫ t2

0

. . .

∫ tk

0

B̄ū dtk+1 . . . dt2 = B̄ū
tk1
k!

=
d

T ∗
N (d)

tk1
k!
,

since x(l)(0) = 0 for l ∈ [[1, k − 1]] and B̄ū = d
T∗
N (d) ∈ Rn is constant. By taking t1 = k

√
k! T ∗

N (d), we obtain

x(t1) − x0 = d. Thus, the state xgoal is reachable in finite time t1, so the system (5.1) is controllable and

T ∗
k,N (d) ≤ t1.

Assume for contradiction purposes that there exists ũ ∈ Ū such that the state of (5.1) can reach xgoal in

a time τ < t1. Since ũ can be time-varying, we build

û :=
k!

τk

∫ τ

0

. . .

∫ tk

0

ũ(tk+1) dtk+1 . . . dt2.

Since ũ ∈ Ū , ũi(t) ∈ [ūmini , ūmaxi ] for all i ∈ [[1,m+ p]] and t ∈ [0, τ ]. Because ūmini and ūmaxi are constant,

one can easily obtain through k successive integrations that ûi ∈ [ūmini , ūmaxi ] for all i ∈ [[1,m+ p]]. Thus, û
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is an admissible constant control input. Then, we apply ũ to (5.1) on the time interval [0, τ ] and we obtain

x(τ)− x0 = d =

∫ τ

0

. . .

∫ tk

0

B̄ũ(tk+1) dtk+1 . . . dt2 = B̄û
τk

k!
,

so B̄û = k!d
τk . Applying the control input û to the system ẏ(t) = B̄ū(t) on the interval [0, T ] with T := τk

k!

leads to

y(T ) =

∫ T

0

ẏ(t) dt =

∫ T

0

B̄û dt = B̄ûT =
k!d

τk
τk

k!
= d.

Thus, y can reach d in a time T = τk

k! <
tk1
k! = T ∗

N (d), which contradicts the optimality of T ∗
N (d). In other

words, t1 is the minimal time for the state of (5.1) to reach xgoal. Therefore, the infimum of (5.3) is achieved

with the same constant input ū ∈ Ū as T ∗
N (d) in (5.8), and T ∗

k,N (d) = k
√
k! T ∗

N (d).

Remark: The proof of Proposition 16 went smoothly because the initial condition had zero derivatives. We will

study a simple case with non-zero initial condition and show that the calculation of T ∗
k,N can be difficult, if not

impossible. Let k = 2 and denote v := ẋ. Assume that system v̇ = B̄ū is controllable, and ẋ(0) = v(0) = v0 ̸= 0.

For any v1 ∈ Rn∗ there exists an optimal control ū ∈ Ū such that v
(
T ∗
N (v1)

)
− v0 = v1 = B̄ūT ∗

N (v1), with

T ∗
N (v1) > 0, since v1 ̸= 0. Then,

v(t)− v0 =

∫ T

0

B̄ū dτ =

∫ T

0

v1
T ∗
N (v1)

dτ =
tv1

T ∗
N (v1)

,

x(T )− x0 =

∫ T

0

tv1
T ∗
N (v1)

+ v0 dt =
T 2v1

2T ∗
N (v1)

+ v0T.

Taking x(T ) = xgoal leads to a quadratic polynomial in Rn: v1
2T∗

N (v1)
T 2 + v0T − d = 0. These are n scalar

equations for n+ 1 unknowns: v1 and T . Because T ∗
N (v1) depends on v1, the equations are not independent

and thus might not have a solution. In this case, the optimal control input is not constant, making T ∗
2,N

much harder to obtain, even for this seemingly simple case. Time-varying inputs also ruin the geometric

approach of Theorem 11, preventing to solve the fractional optimization of rq over d ∈ S.

A result similar to Proposition 16 holds for the malfunctioning reach time of order k.

Proposition 17: If system (5.7) is resilient, then system (5.2) is resilient for all k ∈ N. The supremum

and infimum of (5.4) are achieved with the same constant inputs u∗ ∈ U and w∗ ∈ W as T ∗
M in (5.9), and

T ∗
k,M (d) = k

√
k! T ∗

M (d) for d ∈ Rn.

Proof. We use the same calculations as in Proposition 16 but with Bu∗(w) +Cw instead of B̄ū and TM (w, d)

instead of T ∗
N (d). Then, u∗ from Lemma 2 produces the best control input u∗(w) for any w ∈ W for system

(5.2).

We go again through the proof of Proposition 16, but this time we use Bu∗(w∗) + Cw∗ and T ∗
M (d). We

conclude that T ∗
k,M (d) = k

√
k! T ∗

M (d) and that w∗ from Proposition 11 is also the worst undesirable input for

system (5.2).

We can now evaluate the quantitative resilience of order k.

Theorem 13: If system (5.6) is resilient, then for all k ∈ N system (5.1) is resilient and rk,q = k
√
rq.

Proof. Based on Propositions 16 and 17,
T∗
k,M (d)

T∗
k,N (d) =

k
√
k! T∗

M (d)
k
√
k! T∗

N (d)
= k

√
T∗
M (d)

T∗
N (d) , so rk,q =

k
√
rq.
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For a resilient system rq ∈ (0, 1], then rk,q ≥ rq. Thus, adding integrators to a resilient system increases

its quantitative resilience. By studying ẋ(t) = B̄ū(t) we can then calculate the quantitative resilience of any

system of the form x(k)(t) = B̄ū(t) for k ∈ N. We will now apply our theory to two numerical examples.

5.7 Numerical examples

Our first example considers a linearized model of a low-thrust spacecraft performing orbital maneuvers. We

study the resilience of the spacecraft with respect to the loss of control over some thrust frequencies. Our

second example features an octocopter UAV (Unmanned Aerial Vehicle) enduring a loss of control authority

over some of its propellers.

5.7.1 Linear quadratic trajectory dynamics

We study a low-thrust spacecraft in orbit around a celestial body. Because of the complexity of nonlinear

low-thrust dynamics the work [115] established a linear model for the spacecraft dynamics using Fourier

thrust acceleration components. Given an initial state and a target state, the model simulates the trajectory

of the spacecraft in different orbit maneuvers, such as an orbit raising or a plane change. The states of this

linear model are the orbital elements x :=
(
a, e, i, Ω, ω, M

)
whose names are listed in Table 5.1.

Because of the periodic motion of the spacecraft, the thrust acceleration vector F can be expressed in

terms of its Fourier coefficients α and β:

F = FRr̂ + FW ŵ + FS(ŵ × r̂) with FR,W,S =

∞∑
k=0

(
αR,W,Sk cos kE + βR,W,Sk sin kE

)
,

where FR is the radial thrust acceleration, FW is the circumferential thrust acceleration, FS is the normal

thrust acceleration and E is the eccentric anomaly. The work [116] determined that only 14 Fourier coefficients

affect the average trajectory, and we use those coefficients as the input ū:

ū =
[
αR0 αR1 αR2 βR1 αS0 αS1 αS2 βS1 βS2 αW0 αW1 αW2 βW1 βW2

]⊤
.

The Fourier coefficients considered in [116] are chosen in
[
− 2.5× 10−7, 2.5× 10−7

]
, so we can safely assume

that for our case the Fourier coefficients all belong to [−1, 1]. Following [115], the state-space form of the

system dynamics is ẋ = B̄(x)ū. We calculate B̄(x) using the averaged variational equations for the orbital

elements given in [116]

B̄(x) :=

√
a

µ

 02,3 B1(x) 02,2 02,5

02,3 02,4 02,2 B2(x)

B3(x) 02,4 B4(x) B5(x)

 ∈ R6×14,

with 0i,j the null matrix of i rows and j columns. We calculate the submatrices using the averaged variational
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equations for the orbital elements from [116]:

B1(x) =

[
ae 2a

√
1− e2 0 0

1
2 (1− e2) − 3

2e
√
1− e2

√
1− e2 − 1

4e
√
1− e2

]

B2(x) =

[
cosω 0

0 sinω csc i

][
−3e

2
√
1−e2

(1+e2)

2
√
1−e2

−e
4
√
1−e2 − 1

2 tanω
1
4e tanω

−3e
2
√
1−e2

(1+e2)

2
√
1−e2

−e
4
√
1−e2

1
2 cotω − 1

4e cotω

]

B3(x) =

[√
1− e2 − 1

2e

√
1− e2 0

−3 3e
2 + 1

2e − 1
2e

2

]
B4(x) =

[
1
2e (2− e2) − 1

4

− 1
2e (2− e2)

√
1− e2 1

4

√
1− e2

]

B5(x) = cos i csc i

[
3
2e

sinω√
1−e2 − 1

2 (1 + e2) sinω√
1−e2

1
4e

sinω√
1−e2 − 1

2
1
4e

0 0 0 0 0

]

with µ = 3.986× 1014 m3s−2 being the standard gravitational parameter of the Earth.

We implement the orbit raising scenario presented in [115], with the orbital elements of the initial and

target orbits listed in Table 5.1.

Table 5.1: Initial and Target States for Raising Maneuver

Name of the Orbital Elements Parameters initial target
semi-major axis a [km] 6678 7345
eccentricity e [ - ] 0.67 0.737
inclination i [degrees] 20 22

longitude of the ascending node Ω [degrees] 20 22
argument of perigee ω [degrees] 20 22

mean anomaly M [degrees] 20 20

We approximate B̄(x) as a constant matrix B̄ taken at the initial state. The resulting matrix is:

B̄ = 10−6 ×



0 0 0 18314 40583 0 0 0 0 0 0 0 0 0

0 0 0 1.1 −3.4 2.3 −0.4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −5.2 3.8 −0.9 −0.7 0.2

0 0 0 0 0 0 0 0 0 −5.5 4 −0.9 5.6 −1.9

3 −2.7 0 0 0 0 0 4.7 −1 5.2 −3.8 1.3 −5.6 1.9

−12.3 7.2 −0.9 0 0 0 0 −3.5 0.8 0 0 0 0 0


.

Coefficients B̄1,4 and B̄1,5 are significantly larger than all the other coefficients of B̄ because the semi-major

axis is larger than any other element, as can be seen in Table 5.1. Losing control over one of the 14 Fourier

coefficients means that a certain frequency of the thrust vector cannot be controlled. Since the coefficients

B̄1,5 and B̄6,1 have a magnitude significantly larger than coefficients of respectively the first and last row of

B̄, we have the intuition that the system is not resilient to the loss of the 1st or the 5th Fourier coefficient.

The matrix B̄ is full rank, so ẋ = B̄ū is controllable. We denote with rmin and rq the vectors whose
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components are respectively rmin(j) and rq(j) for the loss of the frequency j ∈ [[1, 14]],

rmin =
[
−0.2 0.34 0.9 −0.004 −0.38 0.15 0.83 −0.32 0.71 −0.06 0.24 0.2 −0.5 0.5

]
.

Since the 1st, 4th, 5th, 8th, 10th, and 13th values of rmin are negative, according to Corollary 3 the system

is not resilient to the loss of control over any one of these six corresponding frequencies. Their associated

rq is zero. This result validates our intuition about the 1st and 5th frequencies. Corollary 3 also states the

resilience of the spacecraft to the loss over any one of the 2nd, 3rd, 6th, 7th, 9th, 11th, 12th and 14th frequency

because their rmin belongs to (0, 1]. Indeed, the input bounds are symmetric, so we can use the results from

[32] stating that r(C) = r(−C) = rmin. Then, using Theorem 12 we deduce that

rq =
[
0 0.34 0.9 0 0 0.15 0.83 0 0.71 0 0.24 0.2 0 0.5

]
.

Since rq(3), rq(7) and rq(9) are close to 1, the loss of one of these three frequency would not delay

significantly the system. The lowest positive value of rq occurs for the 6th frequency, rq(6) = 0.15. Its inverse,
1

rq(6)
= 6.8 means that the malfunctioning system can take up to 6.8 times longer than the initial system to

reach a target.

The maneuver described in Table 5.1 yields d = xgoal − x0 =
(
667, 0.067, 2, 2, 2, 2

)
. We compute the

associated time ratios t(d) using (5.11) and (5.15) for the loss over each column of B̄:

t(d) =
[
1.1 1.2 1.1 1 ∞ 1 151.1 ∞ 151.1 ∞ 151.1 151.1 ∞ 151.1

]
. (5.18)

Then, losing control over one of the first four frequencies will barely increase the time required for the

malfunctioning system to reach the target compared with the initial system. However, after the loss over

the 7th, 9th, 11th, 12th, or the 14th frequency of the thrust vector, the undesirable input can multiply the

maneuver time by a factor of up to 151.1. If one of the 5th, 8th, 10th, or the 13th frequency is lost, then some

undesirable inputs can render the maneuver impossible to perform.

When computing rq, we have seen that the system is not resilient to the loss of the 1st or the 4th frequency.

Yet, the specific target described in Table 5.1 happens to be reachable for the same loss since the 1st and

4th components of t(d) in (5.18) are finite. Indeed, rq speaks only about a target for which the undesirable

inputs cause maximal possible delay.

5.7.2 Resilience of an octocopter

Resilience of unmanned aerial vehicles (UAV) to propeller failure is crucial to their operations over populated

areas [8]. Because quadcopters have 4 inputs for 6 degrees of freedom, they are underactuated and thus

cannot be resilient to the loss of control authority over one of their propellers [8]. Instead, we consider

the octocopter from [28] represented on Fig. 5.1. Its design decouples the rotational and the translational

dynamics, allowing to keep a payload horizontal, which is crucial for pizza delivery for instance.

In Sections 5.7.2 and 5.7.2, we will first quantify the resilience of this UAV model. Since propellers cannot

operate in a bang-bang fashion, we will then add propellers’ dynamics to the UAV model in Section 5.7.2.

Because of this modification the UAV dynamics are not driftless. Hence, most of our theory does not apply

but still provides good intuition on the quantitative resilience of this octocopter model.
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Figure 5.1: Octocopter layout, image modified from [28].

Rotational dynamics

The roll, pitch and yaw angles of the octocopter are gathered in Y := (ϕ, θ, ψ). The propeller i ∈ [[1, 8]]

spinning at an angular velocity ωi produces a force fi = kω2
i , with the thrust coefficient k. The airflow

created by the lateral rotors produces the extra vertical forces f9, . . . , f12 on Fig. 5.1. From [28], f9+i = bf5+i

for i ∈ [[0, 3]] with the coupling constant b = 0.64. Relying on [110] and [28], the rotational dynamics of the

octocopter are

ϕ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
lk

Ix

(
ω2
3 − ω2

1 + b
(
ω2
7 − ω2

8

))
− Irotor

Ix
θ̇γ

θ̈ =
Iz − Ix
Iy

θ̇ϕ̇+
lk

Iy

(
ω2
2 − ω2

4 + b
(
ω2
5 − ω2

6

))
+
Irotor
Iy

ϕ̇γ

ψ̈ =
Ix − Iy
Iz

θ̇ϕ̇+
d

Iz

(
ω2
2 + ω2

4 − ω2
1 − ω2

3

)
,

with γ = ω2 + ω4 − ω1 − ω3. The rotational equations are linearized around Ẏ = 0 and become Ÿ = B̄rΩ,

with Ω ∈ R8 gathering the squared angular velocities of the propellers ω2
1 , . . . , ω

2
8 and

B̄r =


lk
Ix

0 0

0 lk
Iy

0

0 0 d
Iz


−1 0 1 0 0 0 b −b

0 1 0 −1 b −b 0 0

−1 1 −1 1 0 0 0 0

.
Since the input sets are nonsymmetric: ūi := ω2

i ∈ [0, ω2
max], and the dynamics are given by a double

integrator, the theory of [32] cannot deal with this UAV model. Using Theorem 12 we calculate the

quantitative resilience of the system v̇Y (t) = B̄rū(t) with vY := Ẏ for the loss of control over each single

propeller: rmin =
[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]
. Based on Corollary 3, the UAV is thus resilient to the loss

of control over any single propeller in terms of angular velocity and rq = rmin. Following Theorem 13 we

deduce that Ÿ (t) = B̄rū(t) is also resilient and r2,q =
√
rq =

√
0.1 = 0.32. Then, 1

r2,q
= 3 and 1

rq
= 10 mean

that after the loss of control over any single propeller the UAV might take as much as three times longer to

reach a given orientation, while it might be ten times slower to reach a given angular velocity.
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Translational dynamics

In the inertial frame the position of the UAV is X := (x, y, z) and its orientation yields the rotation matrix

R(ψ, θ, ϕ). The translational equations of motion from [28] are mẌ = R(ψ, θ, ϕ)B̄tkΩ+G, i.e.,

m

ẍÿ
z̈

 = R(ψ, θ, ϕ)

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

1 1 1 1 b b b b

 kΩ+

 0

0

−mg

 . (5.19)

Because of the gravitation term G, the above dynamics are affine. We combine G with the input Ω to make

the dynamics driftless using R(ψ, θ, ϕ)−1 = R(−ψ,−θ,−ϕ),

mẌ = R(ψ, θ, ϕ)
(
B̄tkΩ+R(−ψ,−θ,−ϕ)G

)
= R(ψ, θ, ϕ)

 k(ω2
5 − ω2

6)−mg(−cψsθcϕ + sψsϕ)

k(ω2
7 − ω2

8)−mg(sψsθcϕ + cψsϕ)

k(ω2
1 + ω2

2 + ω2
3 + ω2

4) + bk(ω2
5 + ω2

6 + ω2
7 + ω2

8)−mgcθcϕ

 .
Since the rotational dynamics are resilient, we know that the controller can maintain the UAV horizontal

even after the loss of control over a propeller. From now on, we will then assume θ = ϕ = 0◦. To prevent

obfuscating the following analysis, we assume that this orientation is maintained no matter the inputs u and

w. Additionally, the yaw angle does not affect the translational dynamics, so we also take ψ = 0◦. Then,

the translational dynamics of the octocopter are equivalent to that of a point-mass model and they are fully

decoupled from the rotational dynamics, as desired by design [28]. The position of the UAV is X := (x, y, z)

and satisfies

mẌ =


k(ω2

5 − ω2
6)

k(ω2
7 − ω2

8)

k
∑4
i=1 ω

2
i + bk

∑8
i=5 ω

2
i −mg

 .
The horizontal propellers (ω1, . . . , ω4) are designed to sustain the weight of the drone while the lateral

ones (ω5, . . . , ω8) are smaller and should mostly be used for lateral displacements. Thus, we define the inputs

ūi := kω2
i −

mg
4 ∈ [−mg

4 , kω
2
max − mg

4 ] for i ∈ [[1, 4]] and ūi := kω2
i ∈ [0, kω2

max] for i ∈ [[5, 8]]. Then, the

translational dynamics become

Ẍ(t) = B̄tū(t), Ẋ(0) = X(0) = 0 ∈ R3, (5.20)

with B̄t =
1

m

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

1 1 1 1 b b b b

 .
After the loss of control authority over a propeller, we split B̄t and ū into B, C and u, w as before. The

initial state is the same and the malfunctioning dynamics are

Ẍ(t) = Bu(t) + Cw(t). (5.21)

Matrix B̄t has more columns than rows and the first four columns are identical so we expect the system to

be resilient to the loss of any one of them. However, only column 5 can counteract column 6 and only column
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7 can counteract column 8, and vice-versa. We thus have the intuition that the system is not resilient to the

loss of any one of the last four columns.

For system v̇ = B̄tū, with v := Ẋ, Theorem 12 yields

r(C) =
[
0.766 0.766 0.766 0.766 0 0 0 0

]
,

r(−C) =
[
0.564 0.564 0.564 0.564 0 0 0 0

]
.

Then, according to Corollary 3 the system of dynamics v̇ = B̄tū is only resilient to the loss of any one of

the first four propellers. Following Theorem 12, rq = min
{
r(C), r(−C)

}
=
[
0.564 0.564 0.564 0.564 0 0 0 0

]
.

Since Theorem 13 only applies to resilient systems, we use it on the first four propellers r2,q =
√
rq =[

0.75 0.75 0.75 0.75
]
. Then, 1

rq
= 1.77 and 1

r2,q
= 1.33 mean that the after the loss of a horizontal propeller,

the UAV might need 1.77 times longer to reach a given velocity but only 1.33 times longer to reach a desired

position.

Let us now evaluate how the loss of a propeller impacts the vertical velocity. We take d = (0, 0,−1) and

compute

t(d) =
[
1.77 1.77 1.77 1.77 2.26 2.26 2.26 2.26

]
. (5.22)

The first four values are the same as 1/rq because the direction the worst impacted by the loss of a horizontal

propeller is along d, i.e., the loss of a horizontal propeller has the worst impact on the vertical velocity. We

now simulate various loss of controls and aim to fly vertically the UAV along d = (0, 0,−1).

Figure 5.2: Time evolution of ż. For ’no failure’, v̇ = B̄tū
min. For ’loss of ω1’, v̇ = Bu+ Cw with C the 1st

column of B̄t, w = kω2
max −mg/4 and u = umin. For ’loss of ω5’, v̇ = Bu+ Cw with C the 5th column of

B̄t, w = kω2
max and u = umin except ū6 = kω2

max to keep the UAV on the z-axis.

As illustrated on Fig. 5.2, to reach the velocity v = (0, 0,−1), the nominal system needs 0.102 s, while

the malfunctioning ones need 0.181 s and 0.231 s after the loss of ω1 and ω5 respectively. Then, the reach

times increased by factors 1.77 and 2.26, exactly the values calculated in (5.22) as the choice of inputs in the

simulation is optimal.

We now study T ∗
N (d) and T

∗
M (d) for the velocity targets d(β) = (0, cosβ, sinβ) for all β ∈ [0, 2π]. After

the loss of ω1,
1
rq

= 1.77, so T ∗
M (d) ≤ 1.77 T ∗

N (d) for any d ∈ Rn, as illustrated on Fig. 5.3.

Note that d( 3π2 ) = (0, 0,−1) and as calculated in (5.22) we have T ∗
M (d( 3π2 )) = 1.77 T ∗

N (d(
3π
2 )) as shown

on Fig. 5.3. If the inputs were symmetric we would have T ∗
M (β) = T ∗

M (β + π) for all β as in Fig. 1 of [32].
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Figure 5.3: Evolution of T ∗
N (d) and T ∗

M (d) for a velocity target d(β) = (0, cosβ, sinβ).

However, our inputs are not symmetric and thus T ∗
M (π2 ) ̸= T ∗

M ( 3π2 ) as shown on Fig. 5.3. The lack of input

symmetry results in T ∗
M (β) ̸= T ∗

M (β + π) as shown on Fig. 5.3. Such a situation could not be handled by the

preliminary work [32].

High-fidelity dynamics of the propellers

So far in this work, all inputs were bang-bang because our definition of quantitative resilience asks for

time-optimal transfers. The inputs of the translational dynamics (5.20) encode the propellers’ angular

velocities, which cannot physically change in a bang-bang fashion. Thus, in order to provide a more realistic

model and display the capabilities of our work, we follow [107] and add first-order propellers’ dynamics:

Ẍ(t) = B̄tū(t), ˙̄u(t) =
1

τ

(
ūc(t)− ū(t)

)
, (5.23)

with ūc ∈ R8 a new, possibly bang-bang, command signal. System (5.23) is not driftless, hence preventing a

direct application of our theory. Instead, we proceed heuristically, building on the intuition provided by our

theory to tackle this high-fidelity model.

The time constant τ = 0.1 s is chosen to match the propeller response in Fig. 3 of [92] which also

corresponds to standard models in the literature [8], [28], [110] Because of these new dynamics, the system is

not driftless anymore, but is modeled withẊẌ
˙̄u

 =

0 I 0

0 0 B̄t

0 0 − 1
τ I


XẊ
ū

+

 0

0
1
τ I

 ūc. (5.24)

After the loss of control over the first propeller, we split B̄t and ū as before such that

Ẍ(t) = Bu(t) + Cw(t),

u̇(t) = 1
τ

(
uc(t)− u(t)

)
,

ẇ(t) = 1
τ

(
wc(t)− w(t)

)
,

(5.25)

with the bang-bang command signals uc and wc. We will now study how the actuators’ dynamics impact the
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resilience of the UAV in the vertical direction d = (0, 0, 1).

Figure 5.4: Exponential convergence of ū1 and w to their bang-bang commands ūc1 = ūmax1 = kω2
max −

mg
4

and wc = ūmin1 = −mg
4 .

Since the inputs ū in (5.23) and (u,w) in (5.25) have a non-zero rise time as shown on Fig. 5.4, the vertical

velocities żN of (5.23) and żM of (5.25) react smoothly and slower than their bang-bang counterparts, as

illustrated on Fig. 5.5. For t ≥ 0.4 s, ū and (u,w) have converged to their commands ūc and (uc, wc), and

thus the two slopes of żN (t) in (5.20) and (5.23) are equal, as shown on Fig. 5.5, and so are that of żM (t) in

(5.21) and (5.25).

Figure 5.5: Vertical velocities żN (t) and żM (t) of the nominal and malfunctioning systems demonstrating the
impact of the propellers’ dynamics in (5.23) and (5.25).

The slower reaction time caused by the dynamics of the propellers is also reflected on the vertical positions

zN and zM on Fig. 5.6.

Because of the specific geometry of the system, the optimal inputs for direction d = (0, 0, 1) were trivial

to determine. Then, we calculate the ratio of reach times for systems (5.23) and (5.25), t(d) = 1.12 and for

systems (5.20) and (5.21), tc(d) = 1.14. Hence, modeling the dynamics of the propellers increases slightly the

resilience of the vertical dynamics.

However, the time-optimal commands ūc for (5.23) and (uc, wc) for (5.25) can be time-varying for other

directions d ∈ R3 [78], and determining these optimal commands requires complex algorithms [30], [71]
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Figure 5.6: Vertical positions zN (t) and zM (t) of the nominal and malfunctioning systems demonstrating the
impact of the propellers’ dynamics in (5.23) and (5.25).

because the dynamics are not driftless anymore. Additionally, the Maximax-Minimax Quotient Theorem of

[36] does not hold, which invalidates Theorem 11 and prevents the exact calculation of rq without calculating

t(d) for all d ∈ R3. A stronger theory will be needed to tackle linear non-driftless systems.

5.8 Supporting Lemmata

Lemma 1: If system (5.6) is controllable, then for all d = xgoal − x0 ∈ Rn, the infimum T ∗
N (d) of (5.8) is a

minimum achieved by a constant control input ū∗ ∈ Ū .

Proof. According to Theorem 4.3 of [78] there exists a time optimal control ū∗ ∈ F(Ū). Following Pontryagin

maximum principle [78], ū∗ is bang-bang but does not switch since the dynamics are driftless. Thus, the

infimum T ∗
N in (5.8) is a minimum achieved by a constant control input.

Lemma 2: If system (5.7) is resilient, then for all d ∈ Rn∗ and all w ∈ F(W), the infimum TM (w, d) of (5.9)

is a minimum achieved by a constant control input u∗(w) ∈ U and

TM (w, d) := min
u∈U

{
T ≥ 0 :

∫ T

0

[
Bu(t) + Cw(t)

]
dt = d

}
. (5.26)

Proof. The infimum of (5.9) is

TM (w, d) = inf
u∈F(U)

{
T ≥ 0 :

∫ T

0

Bu(t) dt = z

}
, with z := d−

∫ T

0

Cw(t) dt ∈ Rn,

a constant vector for w fixed. Since system (5.7) is resilient, any z ∈ Rn is reachable. Following Lemma 1

and Theorem 4.3 of [78], a constant time-optimal control exists and the infimum of (5.9) is a minimum.

Lemma 3: For a resilient system following (5.7), function TM (w, d) := min
u∈U

{
T ≥ 0 : (Bu+ Cw)T = d

}
is

continuous in w ∈ W and d ∈ Rn∗ .
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Proof. With X :=
{
Cw : w ∈ W

}
, Y :=

{
Bu : u ∈ U

}
and λ = 1

T we obtain

TM (x, d) =
1

max
y∈Y

{
λ ≥ 0 : x+ y = λd

} .
Since ∥d∥ > 0 and λ ≥ 0, we have λ = ∥λd∥

∥d∥ = ∥x+y∥
∥d∥ . Let d1 := d

∥d∥ , then

TM (x, d) =
∥d∥

max
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d1

}
and Lemma 5.2 of [36] states that TM is continuous in w and d.

5.9 Summary

This chapter introduced the notion of quantitative resilience for linear systems with multiple integrators and

nonsymmetric input sets. Relying on bang-bang control theory and on two specific optimization results, we

transformed a nonlinear problem consisting of four nested optimizations into a single linear optimization.

This simplification leads to a computationally efficient method for verifying the resilience and calculating the

quantitative resilience of driftless systems with multiple integrators.
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Chapter 6

The Maximax Minimax Quotient

Theorem

6.1 Introduction

This chapter establishes the Maximax Minimax Quotient Theorem and is adapted from our work [36]. This

theorem focuses on the specific fractional optimization problem introduced in Chapter 5 and composed of

four nested optimization problems. For this reason, a search algorithm would have a high computational cost

and would be especially wasteful since an analytical solution exists.

Our ratio of interest features a max-min optimization [117] belonging to the setting of semi-infinite

programming [118]. Because of the infinite number of constraints, it is not possible to immediately apply the

classical results of linear max-min theory [119] stating that the maximum is attained on the boundary of

the constraint set. Nonetheless, thanks to the specific geometry of our problem we are able to prove a very

similar result.

Armed with this preliminary result on max-min programming, we formulate and establish the Maximax

Minimax Quotient Theorem. This result concerns the maximization of a ratio of a maximum and a minimax

over two polytopes. In the special case where these polytopes are symmetric, this result reduces to Theorem

3.2 of [32], whose the proof was again omitted for length concerns.

The remainder of this chapter is organized as follows. Section 6.2 establishes the existence of the Maximax

Minimax Quotient and proves a preliminary optimization result. Section 6.3 states our central theorem and

provides its proof. Section 6.4 gathers all the lemmas involved in the proof of the Maximax Minimax Quotient

Theorem. Section 6.5 justifies the continuity of two maxima functions used during the proof of our main

result. Finally, Section 6.6 illustrates the proof of our theorem on a simple example.

6.2 Preliminaries

Definition 11: A polytope in Rn is a compact intersection of finitely many half-spaces.

Thus, this chapter only considers convex polytopes. If X and Y are two nonempty polytopes in Rn with
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−X ⊂ int(Y), and d ∈ S, we define the Maximax Minimax Quotient as

rX ,Y(d) :=

max
x∈X , y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
min
x∈X

{
max
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}} . (6.1)

The objective of the Maximax Minimax Quotient Theorem is to determine the direction d that maximizes

rX ,Y(d). Note that in the numerator of (6.1), x and y are chosen together to satisfy the constraint x+y ∈ R+d,

while in the denominator this constraint only applies to y. Before starting the actual proof of this theorem,

we first need to justify the existence of the minimum and the maxima appearing in (6.1).

Proposition 18: Let X , Y be two nonempty polytopes in Rn with −X ⊂ int(Y), dimY = n and d ∈ S.
Then,

(a) max
x∈X , y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
exists,

(b) λ∗(x, d) := max
y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
exists for all x ∈ X ,

(c) min
x∈X

{
λ∗(x, d)

}
exists,

(d) and min
x∈X

{
λ∗(x, d)

}
> 0.

Proof. (a) Let S :=
{
(x, y) ∈ X × Y : x + y ∈ R+d

}
. Set S is a closed subset of the compact set

X × Y, so S is compact. Since X is nonempty, we take x ∈ X . Using −X ⊂ Y we have −x ∈ Y
and x + (−x) = 0 ∈ R+d. Then, (x,−x) ∈ S, so S is nonempty. Function f : S → R defined as

f(x, y) := ∥x+ y∥ is continuous, so it reaches a maximum over S.

(b) For x ∈ X define S(x) :=
{
y ∈ Y : x+ y ∈ R+d

}
. Since S(x) is a closed subset of the compact set Y,

S(x) is compact. Since −X ⊂ Y , we have −x ∈ S(x) and so S(x) ̸= ∅. Function fx : S(x) → R defined

as fx(y) := ∥x+ y∥ is continuous, so it reaches a maximum over S(x), i.e., λ∗ exists.

(c) For x ∈ X and d ∈ S, the argument of λ∗(x, d) is uniquely defined as y∗(x, d) := λ∗(x, d)d − x since

∥d∥ = 1 and

y∗(x, d) = argmax
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
. (6.2)

Lemma 15 shows that λ∗ is continuous in x and d, so y∗ is also continuous in x and d. Then, function

f : X → R defined as f(x) := ∥x+ y∗(x, d)∥ is continuous, so it reaches a minimum over the compact

and nonempty set X .

(d) Note that y∗(x, d) ∈ ∂Y for all x ∈ X . Indeed, assume for contradiction purposes that there exists

ε > 0 such that Bε
(
y∗(x, d)

)
∈ Y. We required dimY = n to make this ball of full dimension, so that

z := y∗(x, d) + εd ∈ Y. Then, x + z =
(
λ∗(x, d) + ε)d ∈ R+d and ∥x + z∥ = λ∗(x, d) + ε > λ∗(x, d)

contradicting the optimality of λ∗. Thus, y∗(x, d) ∈ ∂Y . Since −X ⊂ int(Y), we have ∥x+y∗(x, d)∥ > 0

for all x ∈ X .

Then, with the assumptions of Proposition 18 the Maximax Minimax Quotient is well-defined. The proof

of our main theorem relies on another optimization result stating that the argument of the minimum in (6.1)

lies at a vertex of X .
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Definition 12: A vertex of a set X ⊂ Rn is a point x ∈ X such that if there are x1 ∈ X , x2 ∈ X and

λ ∈ [0, 1] with x = λx1 + (1− λ)x2, then x = x1 = x2.

With this definition, a vertex of a polytope corresponds to the usual understanding of a vertex of a

polytope.

Theorem 14: Let d ∈ S, X and Y two polytopes of Rn with −X ⊆ Y and dimY = n. Then, there exists a

vertex v of X where min
x∈X

{
λ∗(x, d)

}
is reached.

Proof. According to Proposition 18 the minimum of λ∗ exists. Then, let x∗ ∈ X such that

λ∗(x∗, d) = min
x∈X

{
λ∗(x, d)

}
, i.e., ∥y∗(x∗) + x∗∥ = min

x∈X
∥y∗(x) + x∥.

Since −x∗ must minimize the distance between itself and y∗(x∗) ∈ ∂Y, with −X ⊂ Y obviously x∗ ∈ ∂X .

Assume now that x∗ is not on a vertex of ∂X . Let Sx be the surface of lowest dimension in ∂X such that

x∗ ∈ Sx and dimSx ≥ 1.

Let v be a vertex of Sx and x(α) := x∗ + α(v − x∗) for α ∈ R. Notice that x(0) = x∗ and x(1) = v. Due

to the choice of v, the convexity of Sx and x∗ not being a vertex, there exists ε > 0 such that x(α) ∈ Sx for

all α ∈ [−ε, 1]. We also define the lengths L(α) := ∥y∗
(
x(α)

)
+ x(α)∥ and L∗ := L(0).

Since ∥d∥ = 1 and y∗
(
x(α)

)
+ x(α) ∈ R+d, we have L(α) = ⟨y∗

(
x(α)

)
+ x(α), d⟩. By definition of x∗, we

know that L∗ ≤ L(α) for all α ∈ [−ε, 1]. For contradiction purposes assume that there exists α0 ∈ (0, 1] such

that L∗ < L(α0). We introduce the convexity coefficient β := α0

α0+ε
> 0 and then

L∗ = βL∗ + (1− β)L∗ < βL(−ε) + (1− β)L(α0)

< β⟨y∗
(
x(−ε)

)
+ x(−ε), d⟩+ (1− β)⟨y∗

(
x(α0)

)
+ x(α0), d⟩ = ⟨z + x∗, d⟩,

with z := βy∗
(
x(−ε)

)
+ (1− β)y∗

(
x(α0)

)
. Indeed, note that βx(−ε) + (1− β)x(α0) = x∗, and z + x∗ ∈ R+d.

Note that

L∗ = max
y∈Y

{
⟨x∗ + y, d⟩ : x∗ + y ∈ R+d

}
, but L∗ < ⟨x∗ + z, d⟩.

Given that z ∈ Y by convexity of Y and x∗ + z ∈ R+d, we have reached a contradiction. Thus, there is

no α0 ∈ (0, 1] such that L∗ < L(α0). Therefore, for all α ∈ [0, 1], L(α) = L∗. By taking α = 1, we have

x(α) = v, so the minimum L∗ is also reached on the vertex v of X .

We have now all the preliminary results necessary to state our central theorem.

6.3 The Maximax Minimax Quotient Theorem

Theorem 15 (Maximax Minimax Quotient Theorem): If X and Y are two polytopes in Rn with −X ⊆ int(Y),

dimX = 1, ∂X = {x1, x2} with x2 ̸= 0 and dimY = n, then max
d∈ S

rX ,Y(d) = max
{
rX ,Y(x2), rX ,Y(−x2)

}
.

Proof. Since dimX = 1, its extremities x1 and x2 are different, so at least one of them is nonzero. Then,

imposing x2 ̸= 0 does not restrain the generality of our result. Following Proposition 18, rX ,Y is well-defined.

Reusing y∗ defined in (6.2), we introduce

x∗M (d) := arg min
x∈X

{
∥x+ y∗(x, d)∥

}
and x∗N (d) := arg max

x∈X

{
∥x+ y∗(x, d)∥ : x+ y∗(x, d) ∈ R+d

}
.
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According to Theorem 14, x∗M (d) ∈ ∂X for all d ∈ S and following Lemma 16, x∗N is a continuous function of

d. For some d ∈ S the argmin and argmax in the definitions of x∗M and x∗N might not be unique; if so we take

the arguments ensuring that x∗M (d) ∈ ∂X and that x∗N is continuous. We also define y∗N (d) := y∗
(
x∗N (d), d

)
and y∗M (d) := y∗

(
x∗M (d), d

)
. Then,

rX ,Y(d) =

max
y ∈Y

{
∥y + x∗N (d)∥ : y + x∗N (d) ∈ R+d

}
max
y ∈Y

{
∥y + x∗M (d)∥ : y + x∗M (d) ∈ R+d

} =
∥x∗N (d) + y∗N (d)∥
∥x∗M (d) + y∗M (d)∥

.

Since dimX = 1, we can take P to be a two-dimensional plane containing X . Then, we will study how

rX ,Y(d) varies when d takes values in S∩P . We introduce the signed angles α := d̂, ∂Y and β := x̂2, d. These

angles are represented on Figure 6.1 and they take value in [0, 2π). We parametrize all directions d ∈ S ∩ P
by the angle β. Then, we will study how rX ,Y(d) varies when β ∈ [0, 2π).

d

∂Yx2

x1

y∗M
x∗M

y∗N x∗N

β

β

βα

Figure 6.1: Illustration of y∗N , x∗N , y∗M and x∗M for a direction d parametrized by β.

We first establish in Lemma 4 that x∗N (d) and x∗M (d) are constant, different and both belong in ∂X
when y∗M (d), d and y∗N (d) all intersect the same face of ∂Y, as illustrated on Figure 6.1. In these situations,

Lemma 5 shows that the ratio rX ,Y is constant. Thus, rX ,Y can only change when one of the three rays

intersects a different face of ∂Y than the other two. We refer to these situations as vertex crossings. Lemma 6

introduces the vertices vπ and v2π.

We study the crossing of vertices before vπ in Lemma 7. During these crossings Lemma 8 shows that rX ,Y

decreases as β increases. Lemma 9 states that rX ,Y reaches a local minimum during the crossing of vπ. As

β increases between vπ and π, Lemmas 10 and 11 prove that rX ,Y increases during the crossing of vertices.

Finally, Lemma 12 completes the revolution by showing that rX ,Y decreases after β = π until a local minimum

at v2π and then increases again until β = 2π. Thus, the directions d ∈ P ∩ S maximizing rX ,Y(d) are collinear

with the set X . Note that Figure 6.1 implicitly assumes that 0 ∈ X . Lemma 13 proves that even if 0 /∈ X all

above results still hold. Therefore, max
d∈ S

rX ,Y(d) = max
P

{
max

d∈P ∩ S
rX ,Y(d)

}
= max

{
rX ,Y(x2), rX ,Y(−x2)

}
.

In the special case where X and Y are symmetric polytopes, this result reduces to Theorem 3.2 of [32].

Indeed, rX ,Y becomes an even function which leads to rX ,Y(x2) = rX ,Y(−x2).

6.4 Supporting lemmata

In this section we establish all the lemmas involved in the proof of the Maximax Minimax Quotient Theorem.

Lemma 4: If d, y∗N (d) and y
∗
M (d) all intersect the same face of ∂Y, then x∗N (d) and x∗M (d) are constant,

different and both belong to ∂X .
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Proof. We introduce the angles βM := x̂2, y∗M and βN := x̂2, y∗N . Let α0 be the value of α when β = 0, i.e.,

when d is positively collinear with x2.

We say that y∗N is leading and y∗M is trailing when βM < βN , and conversely when βN < βM , we say that

yM is leading and yN is trailing.

For each d ∈ S∩P we define D(d) := max
y∈Y

{
∥y∥ : y ∈ R+d

}
, whose existence is justified by the compactness

of Y.

We say that y∗N or y∗M is outside when ∥y∗N + x∗N∥ > D or ∥y∗M + x∗M∥ > D respectively. Otherwise, y∗N
or y∗M is inside. Directly related to the previous definition, we introduce

δM (d) := D(d)− ∥x∗M (d) + y∗M (d)∥ and δN (d) := ∥x∗N (d) + y∗N (d)∥ −D(d). (6.3)

d

D(d)

δN
δM

∂Y

X

x2

x1

y∗M (d)
x∗M (d) = x1

y∗N (d) x∗N (d)

α

α β

βM
β − βM

βN − β

Figure 6.2: Illustration of y∗N (d) leading and outside, while y∗M (d) is trailing and inside the same face of ∂Y.

We know from Theorem 14 that x∗M (d) ∈ ∂X for all d ∈ S. In the case illustrated on Figure 6.2,

x∗M (d) = x1 because it maximizes δM .

If α + β ∈ {π, 2π}, then X is parallel with a face of ∂Y making x∗N and x∗M not uniquely defined.

Regardless, we can still take x∗N (d) ̸= x∗M (d), with x∗N (d) ∈ ∂X and x∗M (d) ∈ ∂X . Otherwise, x∗N and x∗M are

uniquely defined. Since x∗N (d) ∈ X , x∗M (d) ∈ X for all d ∈ S and dimX = 1, vectors x∗N (d) and x
∗
M (d) are

always collinear. We then use Thales’s theorem and obtain δN (d) = δM (d)
∥x∗

N (d)∥
∥x∗

M (d)∥ . Since x
∗
N (d) is chosen

to maximize δN and is independent from δM , it must have the greatest norm, so x∗N (d) ∈ ∂X . In the case

where α+ β /∈ {π, 2π}, ∥x+ y∥ depends on the value of x. Because x∗N (d) is chosen to maximize ∥x+ y∥
while x∗M (d) is minimizing it, we have x∗N (d) ̸= x∗M (d).

Since x∗N is continuous according to Lemma 16 and x∗N (d) ∈
{
x1, x2

}
, then x∗N (d) is constant on the faces

of ∂Y. Because x∗M (d) ∈ ∂X too, it must also be constant.

Lemma 5: When d, y∗N (d) and y∗M (d) all intersect the same face of ∂Y, the ratio rX ,Y(d) is constant.

Proof. Based on Figure 6.2 we apply the sine law in the triangle bounded by ∂Y, δM and x∗M

∥x∗M (d)∥
sinα

=
δM (d)

sin(π − α− β)
=

δM (d)

sin(α+ β)
, so

δM (d)

D(d)
=

∥x∗M (d)∥ sin(α+ β)

D(d) sinα
.

Similarly for the triangle bounded by ∂Y, δN and x∗N , the law of sines yields

∥x∗N (d)∥
sinα

=
δN (d)

sin(π − α− β)
=

δN (d)

sin(α+ β)
, so

δN (d)

D(d)
=

∥x∗N (d)∥ sin(α+ β)

D(d) sinα
.

Even if the two equations above were derived for the specific situation of Figure 6.2, they hold as long as y∗N ,
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D and y∗M intersect the same face of ∂Y. Based on (6.3) we have

rX ,Y(d) =
D(d) + δN (d)

D(d)− δM (d)
=

1 + δN
D

1− δM
D

. (6.4)

We will now prove that the ratios δN/D and δM/D do not change on a face of ∂Y. Let d1 ∈ P ∩ S and

d2 ∈ P ∩ S such that D(d1), D(d2), y
∗
M (d1), y

∗
M (d2), y

∗
N (d1) and y

∗
N (d2) all intersect the same face of ∂Y , as

illustrated on Figure 6.3.

∂Y

d1

D(d1)
β1

α1

d2

D(d2)β2
α2

β2 − β1

Figure 6.3: Ratio rX ,Y(d) is constant on a face of ∂Y.

The sum of the angles of the triangle in Figure 6.3 is

(β2 − β1) + α2 + (π − α1) = π so β2 + α2 = β1 + α1. (6.5)

Therefore, α+ β is constant on faces of ∂Y. We use the sine law in the triangle in Figure 6.3 and obtain

D(d1)

sinα2
=

D(d2)

sin(π − α1)
=
D(d2)

sinα1
, so, D(d1) sinα1 = D(d2) sinα2.

According to Lemma 4 we also know that x∗N (d1) = x∗N (d2), thus

δN (d1)

D(d1)
=

∥x∗N (d1)∥ sin(α1 + β1)

D(d1) sinα1
=

∥x∗N (d2)∥ sin(α2 + β2)

D(d2) sinα2
=
δN (d2)

D(d2)
.

The same holds for δM/D. Hence, (6.4) yields rX ,Y(d1) = rX ,Y(d2).

Lemma 6: There are two vertices of Y ∩ P, namely vπ and v2π whose crossing by d makes the angle α+ β

become greater than π and 2π respectively.

Proof. We have taken the convention that the angles are positively oriented in the clockwise orientation.

According to (6.5), the angle α+ β is constant on a face of ∂Y. When d crosses a vertex of external angle

ε as represented on Figure 6.5, the value of α has a discontinuity of +ε. Let q be the number of vertices

of ∂Y and εi the external angle of the ith vertex vi. Since Y ∩ P is a polygon,
∑q
i=1 εi = 2π. We can then

represent the evolution of α+ β as a function of β with Figure 6.4. Instead of labeling the horizontal axis

with the values taken by β as the corresponding vector d(β) crosses the vertex vi, we directly use vi with a

slight abuse of notation.

Recall that α0 is the value of α when β = 0. After a whole revolution α+ β = α0 + 2π. So there are two

vertices vπ and v2π where α+ β first crosses π and then 2π. In the eventuality that α+ β = π or 2π on a

face of ∂Y, we define vπ or v2π as the vertex preceding the face.
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β

α+ β

0 2πv1 v2 v3 vq

α0

α0 + ε1

α0 + ε1 + ε2

α0 + ε1 + ε2 + ε3

α0 + 2π

Figure 6.4: Evolution of α+ β with β increasing clockwise in [0, 2π).

Lemma 7: During the crossing of vertices before vπ as β increases, x∗N (d) = x2 and x∗M (d) = x1. They are

constant, different and both belong in ∂X .

Proof. We study the crossing of a vertex v of angle ε between the faces F1 and F2 of ∂Y. For each vertex

v we introduce xv the vector collinear with X , going from v to the ray directed by d, as illustrated on

Figure 6.5 and we say that the crossing of v is ongoing as long as ∥xv∥ < max{∥x1∥, ∥x2∥}. We also define

δv := ∥v + xv∥ −D.

F1

F2

v
ε

d y∗N

x∗N

δN

y∗M
x∗M δM

xvδv

β α

Figure 6.5: Illustration of xv during the crossing of a vertex v, with y∗N leading.

Before starting the crossing of vπ we have α + β ∈ (α0, π). This situation is depicted on Figure 6.2,

where y∗N is leading and outside, so y∗N reaches the vertex before y∗M and d. The length of x∗N (d) can vary to

maximize δN , so y∗N could still intersect F1, even if the crossing is ongoing. We have seen in Lemma 4 that if

y∗N is still on F1, then it must be the furthest possible to maximize δN , in that case y∗N = v. Otherwise, y∗N
intersects F2. We want to establish a criterion to distinguish these two possible scenarios.

We first consider the scenario where y∗N = v and x∗N (d) = xv. We take y ∈ F2\{v} such that x2+ y ∈ R+d

as represented on Figure 6.6 and we define δ := ∥x2 + y∥ −D.

F1

F2

ε

d y

x2

δ

y∗N

xv = x∗N
δN = δv

y∗M

x∗M δMβ α

Figure 6.6: Illustration of the crossing scenario where y∗N = v.

Since δN must be maximized by the choice of y∗N and y ̸= y∗N , we have δ < δN = δv. But ∥x2∥ > ∥xv∥, so
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the line segment corresponding to x2 crosses the interior of Y . Focusing on this part of Figure 6.6 we obtain

Figure 6.7.

F1

F2

v

ε
d

δ

x2

βα

Figure 6.7: Illustration of the line segment corresponding to x2 crossing the interior of Y in Figure 6.6.

Two of the angles of the triangle delimited by F1, F2 and x2 are π − α− β and π − ε. Therefore, their

sum is in (0, π) and thus α+ β + ε > π. Since we assumed that α+ β ∈ (α0, π), the vertex v must in fact be

vπ for this scenario to happen.

Thus, the crossing of a vertex preceding vπ follows the second scenario as depicted on Figure 6.5 with

y∗N ∈ F2. We study Figure 6.8 which is a more detailed view of Figure 6.5, with δ0 depending solely on d and

ε.

F1

F2
v ε

d

δ0

δv − δ0

δN − δv

xv
x∗N

Figure 6.8: Illustration of xv and x∗N in Figure 6.5.

Since xv and x∗N (d) are collinear, we can apply Thales’s theorem in Figure 6.8 and obtain that

δN − δ0 = (δv − δ0)
∥x∗N (d)∥
∥xv(d)∥

.

Then, δN is maximized when ∥x∗N (d)∥ is maximal, so x∗N (d) = x2 during the crossing. We know from

Theorem 14 that x∗M (d) ∈ ∂X for all d ∈ S. Then, as in Lemma 4, x∗N and x∗M are constant and different

since x∗N is continuous in d, so x∗M (d) = x1.

Lemma 8: During the crossing of vertices before vπ as β increases, rX ,Y(d) decreases.

Proof. The leading vector y∗N is outside and crosses a vertex v between the faces F1 and F2 of ∂Y while β

increases. We separate the vertex crossing into two parts: when only y∗N ∈ F2, and when both d ∈ F2 and

y∗N ∈ F2. Let ε > 0 be the external angle of the vertex as shown on Figure 6.9.

According to Lemma 5, rX ,Y is constant on faces of ∂Y and we call rF1
its value on the face F1. If F1

was prolonged past v with a straight line (dashed line on Figure 6.9), then we would have y∗N (d) ∈ F1 and

rX ,Y(d) = rF1
. But, y∗N (d) ∈ F2 as proven in Lemma 7 because the crossing occurs before vπ. We call l the

resulting difference in δN as illustrated on Figure 6.9. Notice that the two green segments of length l in

Figure 6.9 are parallel. We parametrize the position of y∗N on F2 with the length m as defined on Figure 6.9.
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Figure 6.9: Part I of the crossing of vertex v by y∗N leading and outside as β increases.

When y∗N = v, m = 0, and m increases with β. Using the sine law we obtain

m

sinβ
=

l

sin(π − α− β)
=

l

sin(α+ β)
. (6.6)

Then,

rX ,Y(d) =
D + δN
D − δM

=
D + δN + l

D − δM
− l

D − δM
= rF1

− m sin(α+ β)

(D − δM ) sin(β)
. (6.7)

By definition the length m is positive. Since −x∗M ∈ int(Y) but y∗M ∈ ∂Y , we have D− δM = ∥y∗M +x∗M∥ > 0.

Before vπ we have α+β ∈ (α0, π). In that case sin(α+β) > 0 and sin(β) > 0. Therefore, the term subtracted

from rF1
is positive, i.e., rX ,Y(d) < rF1

.

We can now tackle the second part of the crossing, when y∗N and d both have crossed the vertex as

illustrated on Figure 6.10.

v
F1

F2

ε

d

y∗N

x∗N

y∗M
x∗M

l

l

α− ε

β

β

α
δM − l

δN

m

Figure 6.10: Part II of the crossing of vertex v by y∗N leading and outside as β increases.

If F2 was prolonged with a straight line before v and y∗M ∈ F2, then we would have rX ,Y(d) = rF2
, value

of rX ,Y on F2. But that is not the case, y∗M (d) ∈ F1 and the resulting difference in δM is called l. Using the

sine law in Figure 6.10, we can relate l to m

m

sinβ
=

l

sin(π − β − α+ ε)
=

l

sin(α+ β − ε)
. (6.8)

We have α+ β ∈ (α0, π), so sin(β) > 0. If α was still measured between d and F1, then its value would be

αF1
= α− ε. Since we are before the crossing of vπ, αF1

+ β ∈ (α0, π), i.e., α+ β − ε ∈ (α0, π). This yields

sin(α+ β − ε) > 0, which makes l > 0, because the length m is positive by definition. Then,

rF2 =
D + δN

D − (δM − l)
=

D + δN
D − δM + l

<
D + δN
D − δM

= rX ,Y(d). (6.9)
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Thus, the ratio rX ,Y decreases during the crossing of a vertex before vπ.

Lemma 9: During the crossing of vπ, the ratio rX ,Y(d) reaches a local minimum.

Proof. Recall that before the crossing, x∗N (d) = x2 and x∗M (d) = x1. During the crossing of vπ, i.e., when

∥xvπ∥ < max{∥x1∥, ∥x2∥}, we have α+ β ≤ π but α+ β + ε > π. The situation is illustrated on Figure 6.11.

We showed in Lemma 7 that y∗N = vπ and x∗N (d) = xvπ .

F1

F2

ε

d

y∗N

xvπδN = δvπ

y∗M
x∗M δMβ

α

x2
l

Figure 6.11: Crossing of vπ, with y
∗
N = vπ.

If F1 was prolonged with a straight line (dashed line of Figure 6.11), we would have y∗N ̸= vπ, x
∗
N (d) = x2

and the ratio would be rF1 =
D+δvπ+l
D−δM , which is the value of rX ,Y on F1. Since d has not yet crossed vπ,

α+ β < π and thus (6.6) and (6.7) still hold, leading to rX ,Y(d) < rF1 .

Once d has crossed vπ, we still have y∗N = vπ to maximize δN . Then, the equality x∗N (d) = xvπ holds

during the whole crossing, i.e., as xvπ goes from x2 to x1. The second part of the crossing is illustrated on

Figure 6.12.

F1

F2

d

x∗M = x1

y∗M

δM

x2

xvπ

y∗N
δN

x1

l

Figure 6.12: Illustration of the endpoint of y∗M switching from F1 to F2 during the crossing of vπ.

Assume that during the entire crossing of vπ, x
∗
M (d) = x1. Then, at the end of the crossing we will have

y∗M = vπ and x∗M (d) = xvπ = x∗N (d), which contradicts the definitions of x∗M (d) and x∗N (d), they must be

different. Thus, x∗M (d) does not remain equal to x1 during the entire crossing. Since x∗M ∈
{
x1, x2

}
, at some

point x∗M switches to x2 as y∗M switches from F1 to F2. This switching point is illustrated on Figure 6.12,

and y∗M becomes the leading vector.

After this switch, y∗M ∈ F2 and x∗M (d) = x2. If F2 was prolonged with the dashed line on Figure 6.12, we

would have x∗N = x1 instead of xvπ with a gain of l for δN making the ratio equal to rF2 = D+δN+l
D−δM , value of

rX ,Y on F2. But x
∗
N = xvπ and l > 0, thus rF2 >

D+δN
D−δM = rX ,Y(d). Therefore, rX ,Y reaches a local minimum

during the crossing of vπ.

Lemma 10: During the crossing of vertices after vπ as β increases until π, x∗N (d) = x1 and x∗M (d) = x2.

They are constant different and both in ∂X .
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Proof. After the crossing of vπ, α+ β ∈ (π, α0 + π) and y∗M is leading and inside as established in Lemma 9.

Thus, y∗M is the first to reach vertex v. Since x∗M ∈ {x1, x2} we cannot have x∗M = xv during the entire

crossing because xv is a continuous function of β. Thus y∗M passes v and belongs to F2. In Lemma 16 we

showed that x∗N is continuous in d. Thus, x∗N (d) cannot switch like x∗M (d) did around vπ to take the lead.

Instead, x∗N (d) is trailing as illustrated on Figure 6.13.

x2 x1

F1

F2

d

y∗N

x1 = x∗N
δN

y∗M

x∗M = x2

δM

β

Figure 6.13: Crossing of a vertex v after vπ.

Since y∗N ∈ F1 during the crossing, we can apply Thales’s theorem on Figure 6.13 and obtain that for

a fixed d, δN is proportional to ∥x∗N (d)∥. Thus, to maximize δN we have x∗N (d) ∈ ∂X and, since y∗N is

trailing, we have x∗N (d) = x1 during the entire crossing. By the definitions of x∗N (d) and x
∗
M (d), we have

x∗N (d) ̸= x∗M (d). Since both x∗N (d) and x∗M (d) belong to ∂X =
{
x1, x2

}
, then x∗M (d) = x2 during the entire

crossing.

Lemma 11: During the crossing of vertices after vπ as β increases until π, rX ,Y(d) increases.

Proof. The leading vector y∗M is inside and crosses a vertex v between faces F1 and F2 as β increases. We

define β′ := π − β. Then, reversing the crossing illustrated on Figure 6.13 is exactly the crossing illustrated

on Figure 6.9 with β′ increasing and x1 and x2 exchanged. According to Lemma 8, in that reversed crossing

rX ,Y is decreasing. Therefore, rX ,Y increases during the crossing of vertices after vπ as β increases until

π.

Lemma 12: For β > π, rX ,Y(d) decreases until v2π where it reaches a local minimum. After v2π as β

increases until 2π, rX ,Y(d) increases.

Proof. Let us change the angle convention, so that angles are now positively oriented in the counterclockwise

orientation. The vertex that was previously labeled as v2π becomes the new vπ. Then, we only need to apply

Lemmas 7, 8, 9, 10 and 11 to this new configuration to conclude the proof.

Lemma 13: All above results hold even if 0 /∈ X .

Proof. In all the figures we made the implicit assumption that 0 ∈ X , so that x1 and x2 were negatively

collinear. Let x1 be positively collinear with x2 and ∥x2∥ > ∥x1∥.
On Figure 6.2, we would now have y∗N (d) and y∗M (d) both outside. Then, the definition of δM should be

adapted. Let δM (d) := ∥x∗M (d) + y∗M (d)∥−D(d) and then rX ,Y(d) =
D+δN
D+δM

. Except for this modification, we

would still have x∗N (d) = x2 and x∗M (d) = x1. Thales theorem can be used similarly to show that x∗N (d) ∈ ∂X .

Therefore, Lemma 4 holds.
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In the proof of Lemma 5 we still have δN/D and δM/D invariant with respect to d on a given face of ∂Y ,

so rX ,Y is still constant on faces. Lemma 6 is not affected at all. The first part of the crossing of a vertex

before vπ as β increases is illustrated by Figure 6.14.

x1

x2

F1

F2

x∗M

y∗M

δM

x∗N

y∗N

δN − δM
x2

l
d

β

α

Figure 6.14: Part I of the crossing of a vertex before vπ with 0 /∈ X .

For δM to be minimized and δN to be maximized, the Thales theorem clearly proves that x∗M ∈ ∂X and

x∗N ∈ ∂X during the crossing. We still have x∗N (d) = x2 and x∗M (d) = x1, so Lemma 7 holds.

Following the reasoning in Lemma 8, we have l > 0, which leads to

rF1 =
D + δN + l

D + δM
>
D + δN
D + δM

= rX ,Y(d).

During the second part, both y∗N ∈ F2 and y∗M ∈ F2 but d ∈ F1. This situation is illustrated on Figure 6.15.

x1

x2

F1

F2

x∗M

y∗M

δM − l x∗N

y∗N

δN − δM

l

d

Figure 6.15: Part II of the crossing of a vertex before vπ with 0 /∈ X .

We compare the current value of rX ,Y(d) with rF2
, its value on F2:

rF2 =
D + (δN − l)

D + (δM − l)
and rX ,Y(d) =

D + δN
D + δM

.

Since l > 0 and δN > δM , a simple calculation shows that rX ,Y(d) < rF2
. Therefore, rX ,Y is decreasing

during the crossing of a vertex before vπ as β increases, Lemma 8 holds.

During the crossing of vπ, y
∗
N = vπ and x∗N = xvπ with its norm decreasing continuously until x∗N = x1,

while x∗M will switch to x2 in order to minimize δM . This is the same process as described in Lemma 9, so

rX ,Y also reaches a local minimum.

Because all the results studied so far still hold, then Lemmas 10, 11 and 12 hold too because they rely on

those earlier results.

We have now established all the lemmas directly involved in the proof of the Maximax Minimax Quotient

Theorem, but we still have a few claims of continuity to prove.
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6.5 Continuity of extrema

In Proposition 18 (iii) we needed the continuity of λ∗ to prove it has a minimum and in Lemma 4 we used

the continuity of x∗N and y∗N . In this section we will thus prove the continuity of these two maxima functions

relying on the Berge Maximum Theorem [1].

Lemma 14: Let X and Y be two nonempty polytopes in Rn with −X ⊂ Y. Then, the set-valued function

φ : X × S ⇒ Y defined as φ(x, d) := Y ∩
{
λd− x : λ ≥ 0

}
satisfies Definition 17.2 of [1].

Proof. We define Ω := X × S, so that φ : Ω ⇒ Y. On the space Ω we introduce the norm ∥ · ∥Ω as

∥(x, d)∥Ω = ∥x∥+ ∥d∥. Since ∥ · ∥ is the Euclidean norm, ∥ · ∥Ω is a norm on Ω. By Definition 17.2 of [1], we

need to prove that φ is both upper and lower hemicontinuous at all points of Ω.

First, using Lemma 17.5 of [1] we will prove that φ is lower hemicontinuous by showing that for an open

subset A of Y, φl(A) is open. The lower inverse image of A is defined in [1] as

φl(A) :=
{
ω ∈ Ω : φ(ω) ∩ A ≠ ∅

}
=
{
(x, d) ∈ X × S : Y ∩ {λd− x : λ ≥ 0} ∩ A ̸= ∅

}
=
{
(x, d) ∈ X × S : {λd− x : λ ≥ 0} ∩ A ̸= ∅

}
,

because A ⊆ Y. Let ω = (x, d) ∈ φl(A). Then, there exists λ ≥ 0 such that λd− x ∈ A. Since A is open,

there exists ε > 0 such that the ball Bε(λd− x) ⊂ A. Now let ω1 = (x1, d1) ∈ Ω and denote εx := ∥x1 − x∥
and εd := ∥d1 − d∥. Then,

∥λd1 − x1 − (λd− x)∥ = ∥λ(d1 − d)− (x1 − x)∥ ≤ λεd + εx.

Since λ ≥ 0 is fixed, we can choose εd and εx positive and small enough so that λεd + εx ≤ ε. Then, we have

showed that for all ω1 = (x1, d1) ∈ Ω such that ∥ω − ω1∥Ω ≤ min(εd, εx), i.e., such that ∥x1 − x∥ ≤ εx and

∥d1 − d∥ ≤ εd, we have λd1 − x1 ∈ Bε(λd− x) ⊂ A, i.e., ω1 ∈ φl(A). Therefore, φl(A) is open, and so φ is

lower hemicontinuous.

To prove the upper hemicontinuity of φ, we will use Lemma 17.4 of [1] and prove that for a closed subset

A of Y , the lower inverse image of A is closed. Let {ωk} be a sequence in φl(A) converging to ω = (x, d) ∈ Ω.

We want to prove that the limit ω ∈ φl(A).

For k ≥ 0, we have ωk = (xk, dk) and define Λk :=
{
λk ≥ 0 : λkdk − xk ∈ A

}
̸= ∅. Since A is a closed

subset of the compact set Y, then A is compact. Thus Λk has a minimum and a maximum; we denote them

by λmink and λmaxk respectively.

Since sequences {dk} and {xk} converge, they are bounded. The set A is also bounded, thus sequence

{λmaxk } is bounded. Let λmax := sup
k≥ 0

λmaxk > 0.

For k ≥ 0, we define segments Sk :=
{
λdk − xk : λ ∈ [0, λmax]

}
, and S :=

{
λd − x : λ ∈ [0, λmax]

}
.

These segments are all compact sets. We also introduce the sequences ak := λmink dk − xk ∈ A ∩ Sk and

bk := λmink d− x ∈ S.

Take ε > 0. Since sequences {dk} and {xk} converge toward d and x respectively, there exists N ≥ 0 such

that for k ≥ N , we have

∥dk − d∥ ≤ ε

2λmax
and ∥xk − x∥ ≤ ε

2
.
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Then, for any λk ∈ [0, λmax] as

∥λkdk − xk − (λkd− x)∥ = ∥λk(dk − d)− (xk − x)∥ ≤ λk
ε

2λmax
+
ε

2
≤ ε.

Since λmink ∈ [0, λmax], we have ∥ak − bk∥ −−−−→
k→∞

0. We define the distance between the sets A and S

dist(A, S) := min
{
∥a− sλ∥ : a ∈ A, sλ ∈ S

}
.

The minimum exists because A and S are both compact and the norm is continuous. Since ak ∈ A and

bk ∈ S, we have dist(A, S) ≤ ∥ak − bk∥ for all k ≥ 0. Therefore, dist(A, S) = 0. So, A ∩ S ̸= ∅, leading to

ω ∈ φl(A). Then, φl(A) is closed and so φ is upper hemicontinuous.

Lemma 15: Let X and Y be two nonempty polytopes in Rn with −X ⊂ Y. Then,

λ∗(x, d) := max
y∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
is continuous in x ∈ X and d ∈ S.

Proof. According to Proposition 18 (ii), whose proof does not rely on the current lemma, λ∗ is well-defined.

We introduce the set-valued function φ : X × S ⇒ Y defined by

φ(x, d) :=
{
y ∈ Y : x+ y ∈ R+d

}
= Y ∩

(
R+d− {x}

)
,

where R+d− {x} =
{
λd− x : λ ≥ 0

}
.

We define the graph of φ as Grφ :=
{
(x, d, y) ∈ X × S× Y : y ∈ φ(x, d)

}
, and the continuous function

f : Grφ→ R+ as f(x, d, y) = ∥x+y∥. Set X ×S is compact and nonempty. Since Y is compact and R+d−{x}
is closed, their intersection φ(x, d) is compact. Because −X ⊂ Y, for all x ∈ X we have −x ∈ φ(x, d), so

φ(x, d) ̸= ∅. According to Lemma 14, φ satisfies Definition 17.2 of [1]. Then, we can apply the Berge

Maximum Theorem [1] and conclude that λ∗ is continuous in x and d.

Lemma 16: Let X and Y be two nonempty polytopes in Rn with −X ⊂ Y. Then, the functions

(
x∗N , y

∗
N

)
(d) = arg max

x∈X , y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
are continuous in d ∈ S.

Proof. Let Z := X ⊕ Y =
{
x+ y : x ∈ X , y ∈ Y

}
. Then Z is the Minkowski sum of two polytopes, so it

is also a polytope [120]. According to Proposition 18 (i), whose proof does not rely on the current lemma,

max
x∈X , y ∈Y

{
∥x+ y∥ : x+ y ∈ R+d

}
exists and thus max

z ∈Z

{
∥z∥ : z ∈ R+d

}
is also well-defined.

Since −X ⊂ Y, for all x ∈ X , −x ∈ Y and thus 0 ∈ Z. Then, {0} and Z are two polytopes in Rn with

±0 ∈ Z. According to Lemmma 15 the function λ∗(0, d) := max
z ∈Z

{
∥z + 0∥ : z + 0 ∈ R+d

}
is continuous in

d ∈ S.
Then, we define the continous function z(d) := λ∗(0, d)d ∈ Z for d ∈ S. Note that z(d) = argmax

z ∈Z

{
∥z∥ :

z ∈ R+d
}
=
(
x∗N , y

∗
N

)
(d), so these functions are continuous.
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6.6 Illustration

We will now illustrate the Maximax Minimax Quotient Theorem on a simple example. We consider polygon

X delimited by the vertices x1 = (0,−0.5) and x2 = (0, 1) in R2 and polygon Y with vertices (±1,±2) and

(±3, 0) as represented on Figure 6.16.
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Figure 6.16: Illustration of polygons X and Y.

Since −X ⊂ int(Y), dimX = 1, x2 ̸= 0 and dimY = 2, the assumptions of the Maximax Minimax

Quotient Theorem are satisfied. To illustrate the proof of the theorem, for all d ∈ S we define the angle

β := x̂2, d positively oriented clockwise. We also enumerate the vertices in the clockwise direction and we

note that v2 = vπ and v5 = v2π as defined in Lemma 6. Then, we compute rX ,Y for β ∈ [0, 2π) as shown on

Figure 6.17. The red spikes denote when the ray d(β) hits a vertex of Y.
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Figure 6.17: Graph of rX ,Y as a function of β.

As demonstrated by the Maximax Minimax Quotient Theorem, rX ,Y has two local maxima achieved at

β = 0 and β = π. These two values are different because polygon X is not symmetric. Note also that the

Maximax Minimax Quotient Theorem does not state that the maximum is only reached when β ∈ {0, π}.
Indeed as shown in Figure 6.17 and established in Lemma 5, rX ,Y is constant on the faces of ∂Y. Thus, the

two local maxima are achieved on the faces [v1, v6] and [v3, v4]. As proven in Lemma 9 and in Lemma 12,

rX ,Y reaches a local minimum during the crossing of the vertices vπ and v2π.

A video illustrating the Maximax Minimax Quotient Theorem on a different polytope can be found
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following the link here or in the footnote1.

6.7 Summary

In this chapter we considered an optimization problem arising from optimal control and pertaining to both

fractional programming and max-min programming. We first justified the existence of the Maximax Minimax

Quotient. Then, relying on numerous geometrical arguments and on the continuity of two maxima functions

we were able to establish the Maximax Minimax Quotient Theorem. This result provides an analytical

solution to the maximization of a ratio of a maximum and a minimax over two polytopes. We illustrated our

theorem and its proof on a simple example in R2. This work filled the theoretical gap left in Chapter 5, and

because of our less restrictive assumptions we also open the way for a more general framework.

1https://www.youtube.com/watch?v=rjKzHyDJX40
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Chapter 7

Resilience of Linear Systems with

Bounded Amplitude

7.1 Introduction

This chapter focuses on extending the results on resilience and quantitative resilience from the driftless

dynamics of Chapter 5 to full-fledged linear systems and is based on our works [33], [37]. The main

contributions of this chapter are fourfold. Firstly, relying on the differential games theory of Hájek [23] and

the controllability conditions of Brammer [91], we establish simple necessary and sufficient conditions to

verify the resilient stabilizability of linear systems, i.e., whether the origin is resiliently reachable from any

initial state. Secondly, we extend Hájek’s duality theorem in order to study the resilient reachability of affine

targets. Thirdly, we use zonotopic underapproximations of reachable sets [61], [82] to determine what states

are guaranteed to be resiliently reachable. Finally, we employ Lyapunov theory [121] to establish analytical

bounds on the quantitative resilience of linear systems.

This chapter is organized as follows. Section 7.2 introduces the system dynamics and the problems of

interest. Section 7.3 provides background results. Section 7.4 establishes necessary and sufficient conditions

for resilient stabilizability of linear systems. Section 7.5 extends these conditions to affine targets and describes

zonotopic underapproximations of the resiliently reachable set of linear systems. Section 7.6 derives analytical

bounds on the quantitative resilience of linear systems. Section 7.7 illustrates our theory on a fighter jet

model and a temperature control system.

7.2 Problem statement

We consider the linear time-invariant system

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, ū(t) ∈ Ū , (7.1)

with constant matrices A ∈ Rn×n and B̄ ∈ Rn×(m+p). The admissible controls are assumed to be in

Ū := [−1, 1]m+p, in line with previous works [33], [71], [121].

After a loss of control authority over p of the m+ p actuators of system (7.1), the input signal ū is split

between the undesirable input signal w ∈ F(W), W := [−1, 1]p, and the controlled input signal u ∈ F(U),
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U := [−1, 1]m. Matrix B̄ is accordingly split in B ∈ Rn×m and C ∈ Rn×p so that the dynamics become

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn. (7.2)

We want to study how the partial loss of control authority affects the stabilizability and the controllability

of the nominal dynamics.

Definition 13: System (7.1) is stabilizable (resp. controllable) if there exists an admissible control signal

ū ∈ F(Ū) driving the state of system (7.1) from any x0 ∈ Rn to 0 ∈ Rn (resp. to any xtg ∈ Rn).

To adapt these two properties to system (7.2), we first need the notion of resilient reachability introduced

in [31].

Definition 14: A target xtg ∈ Rn is resiliently reachable from x0 ∈ Rn by system (7.2) if for all w ∈ F(W),

there exists T ≥ 0 and u ∈ F(U) such that u(t) only depends on w([0, t]) and the solution to (7.2) exists, is

unique, and x(T ) = xtg.

Note that u(t) is allowed to depend on w(t) thanks to real time sensors on all actuators of the system,

even on the malfunctioning ones.

Definition 15: System (7.2) is resiliently stabilizable (resp. resilient) to the loss of the actuators corresponding

to C if 0 ∈ Rn (resp. every xtg ∈ Rn) is resiliently reachable from any x0 ∈ Rn by system (7.2).

We are now led to our first problem.

Problem 10: Determine whether system (7.2) is resiliently stabilizable and/or resilient.

Even if system (7.2) is not resilient, it might still be able to resiliently reach some targets, just not all of

Rn.

Problem 11: Determine the states xtg ∈ Rn that are resiliently reachable from a given x0 ∈ Rn by system

(7.2).

For time-constrained missions, resilience is not sufficient. We also need to quantify how much slower

the malfunctioning system is compared to the nominal one. To do so, we follow Chapter 5 and recall the

definitions of the nominal reach time

T ∗
N (x0, xtg) := inf

ū∈F(Ū)
{T > 0 : x(T ) = xtg in system (7.1)} , (7.3)

the malfunctioning reach time

T ∗
M (x0, xtg) := sup

w∈F(W)

{
inf

u∈F(U)
{T > 0 : x(T ) = xtg in system (7.2)}

}
, (7.4)

and the quantitative resilience

rq(xtg) := inf
x0 ∈Rn

T ∗
N (x0, xtg)

T ∗
M (x0, xtg)

. (7.5)

If x0 = xtg, then T
∗
N = T ∗

M = 0 and we take the convention that their ratio is 1. If xtg is reachable from x0

by system (7.1), then Theorem 4.3 of [78] states that the inf in (7.3) becomes min since Ū is compact and
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convex. Similarly, T ∗
M in (7.4) is achieved by optimal signals w∗ ∈ F(W) and u∗ ∈ F(U) when system (7.2)

is resilient.

The only way to calculate u∗ without any future knowledge of w∗ is to solve the intractable Isaac’s main

equation [86], which is the differential games counterpart of the Hamilton-Jacobi-Bellman (HJB) equation.

According to [85], Isaac’s main equation is even more difficult to solve than the HJB equation, which usually

results in intractable partial differential equations [78]. Hence, [86] produces only suboptimal solutions, itself

concluding that its practical contribution is minimal.

Instead of the setting of [86], we choose [30], where u∗ and w∗ are unique, bang-bang [80], and make a

time-optimal transfer from x0 to xtg. The controller knows that w∗ will be chosen to make T ∗
M the longest.

Thus, u∗ is chosen to react optimally to this worst undesirable input. Then, w∗ is chosen, and to make T ∗
M

the longest, it is the same as the controller had predicted, this is a Stakelberg optimum [87]. Hence, from an

outside perspective it appears as if the controller built u∗ knowing w∗ in advance, as reflected by (7.4). Then,

T ∗
M is time-optimal and can be meaningfully compared with T ∗

N , leading to the following problem.

Problem 12: Quantify the resilience of system (7.2).

We will now provide the background results upon which we build our theory.

7.3 Background results

We first introduce Hájek’s differential games approach [23] which relies on dynamics

ẋ(t) = Ax(t) + z(t), x(0) = x0 ∈ Rn, z(t) ∈ Z, (7.6)

where Z ⊆ Rn is the Minkowski difference between the set of admissible control inputs BU :=
{
Bu : u ∈ U

}
and the opposite of the set of undesirable inputs CW :=

{
Cw : w ∈ W

}
, i.e.,

Z := BU ⊖ (−CW) =
{
z ∈ BU : z − Cw ∈ BU for all w ∈ W

}
.

Theorem 16 (Hájek’s duality theorem [23]): The state of system (7.2) can be driven to 0 ∈ Rn at time T for

all w ∈ F(W) by control signal u ∈ F(U) if and only if the state of system (7.6) can be driven to 0 at time T

by a control signal z ∈ F(Z), and Bu(·) = z(·)− Cw(·).

Informally, Z represents the control available after counteracting any undesirable input. Since Ū is

symmetric, compact, and convex, sets BU and CW also have these properties by linearity. According to [83],

Z is then also symmetric, compact, and convex.

Theorem 16 transforms the resilient stabilizability of system (7.2) into the stabilizability of system

(7.6). Because inputs are bounded, Kalman’s stabilizability condition [90] do not apply, instead we employ

Corollary 3.6 of [91].

Theorem 17 (Stabilizability condition [91]): If Ū ∩ ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system (7.1) is

stabilizable if and only if rank
(
C(A, B̄)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤

satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .

The first condition of Theorem 17 ensures the existence of a control canceling B̄ū so that the state can be

maintained at an equilibrium. The second condition verifies whether the set of admissible controls is wide
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enough. The rank condition is Kalman’s [91] and the last two conditions guarantee that the drift term Ax

does not prevent stabilization. If Ū = Rm, Theorem 17 reduces to the usual stabilizability condition.

To verify controllability we use Corollary 3.7 of [91], which is very similar to Theorem 17 except that

the eigenvalues of A must have a zero real part to avoid creating a drift preventing the reachability of affine

targets.

Theorem 18 (Controllability condition [91]): If Ū ∩ ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system (7.1)

is controllable if and only if rank
(
C(A, B̄)

)
= n, Re

(
λ(A)

)
= 0, and there is no real eigenvector v of A⊤

satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .

We now have all the background results to start solving Problem 10 by investigating resilient stabilizability.

7.4 Resilient stabilizability

In this section, we first establish a simple resilient stabilizability condition before deriving a more complex

condition with a wider range of application.

Proposition 19: If int(Z) ̸= ∅, then system (7.2) is resiliently stabilizable if and only if Re
(
λ(A)

)
≤ 0.

Proof. According to Theorem 16, the resilient stabilizability of system (7.2) is equivalent to the stabilizability

of system (7.6). We apply Theorem 17 and obtain that if Z ∩ ker(I) ̸= ∅ and int(co(Z)) ̸= ∅ in Rn, then
system (7.6) is stabilizable if and only if rank

(
C(A, I)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector

v of A⊤ satisfying v⊤Iz ≤ 0 for all z ∈ Z.

Because ker(I) = {0}, the first condition becomes 0 ∈ Z. Since Z is convex, the second condition becomes

int(Z) ̸= ∅, which is equivalent to 0 ∈ int(Z) according to Lemma 17 of Section 7.8. This second condition

implies the first one, so we only keep int(Z) ̸= ∅.
We now assume that int(Z) ̸= ∅ and we simplify the last three conditions. Since rank(I) = n, the third

condition is always true. Lemma 17 yields 0 ∈ int(Z). Thus, there exists ε > 0 such that Bn(0, ε) ⊆ Z. If

A⊤ has no real eigenvector, the last condition is trivially true. Otherwise, for v be a real eigenvector of A⊤.

Let z = ε v
∥v∥ , then z ∈ Bn(0, ε), so z ∈ Z and v⊤Iz = ε∥v∥ > 0.

Proposition 19 has a limited range of application because of its requirement int(Z) ̸= ∅ in Rn, i.e., Z must

be of dimension n. However, stabilizability does not require BU to be dimension n, so resilient stabilizability

should not require that from Z either. We then want our condition to rely on the relative interior of Z
instead of its interior.

Definition 16: The relative interior relint(S) of a set S is the interior of S considered as a subset of its

affine hull.

Definition 17: The affine hull of a set S is the largest subspace included in S with respect to inclusion.

If we apply Theorem 17 to system (7.6) as in Proposition 19, then int(Z) ̸= ∅ will appear. Instead, we

first need to transport system (7.6) into a basis adapted to Z. Let r := dim(Z) ≤ n. If Z = ∅, we take

the convention that r = −∞ and Z := [ ] ∈ Rn×0, the empty matrix with Im([ ]) = ∅. Otherwise, according

to Lemma 18 of Section 7.8, we have 0 ∈ Z. Then, span(Z) is a vector space from which we take a basis

{z1, . . . , zr} in Rn. We define the matrix Z :=
(
z1, . . . , zr

)
∈ Rn×r with the convention that Z = 0 ∈ Rn×1 if

r = 0. Then, Im(Z) = span(Z) and we can formulate a resilient stabilizability condition less restrictive than

Proposition 19.
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Proposition 20: If relint(Z) ̸= ∅, then system (7.2) is resiliently stabilizable if and only if rank
(
C(A,Z)

)
= n,

Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.

Proof. We apply Theorem 16 and work on system (7.6). Since z1, . . . , zr are linearly independent, we complete

this sequence into a basis of Rn with V := (vr+1, . . . , vn) and obtain a transition matrix Tz = (Z, V ). We

change basis in system (7.6) with x = T−1
z y so that

ẋ(t) = T−1
z ẏ(t) = T−1

z Ay(t) + T−1
z z(t) = Âx(t) + s(t), s(t) ∈ S := T−1

z Z =
{
T−1
z z : z ∈ Z

}
,

with Â = T−1
z ATz. By definition, zi = Tzei and thus S ⊆ span({e1, . . . , er}) in Rn. Let s ∈ S. Then,

s =


s1
...
sr

0n−r,1

 =

(
Ir

0n−r,r

)s1...
sr

 := B̂ŝ,

with B̂ = T−1
z Z ∈ Rn×r and ŝ ∈ Rr, ŝ ∈ Ŝ := projr(S), the projection of S onto Rr. Hence, the stabilizability

of system (7.6) is equivalent to that of system

˙̂x(t) = Âx̂(t) + B̂ŝ(t), x̂(0) = T−1
z x0, ŝ(t) ∈ Ŝ. (7.7)

Applying Theorem 17 to system (7.7) leads to the following stabilizability conditions: Ŝ ∩ ker(B̂) ̸= ∅,
int(co(Ŝ)) ̸= ∅, Re(λ(Â)) ≤ 0, rank

(
C(Â, B̂)

)
= n, and there is no real eigenvector v̂ of Â⊤ satisfying

v̂⊤B̂ŝ ≤ 0 for all ŝ ∈ Ŝ. We now simplify these five conditions.

1. Since B̂ =
(
Ir
0

)
, rank(B̂) = r, and hence ker(B̂) = {0} in Rr. Then, Ŝ ∩ ker(B̂) ̸= ∅ is equivalent to

0 ∈ Ŝ = projr(T
−1
z Z). In turn, this is equivalent to the existence of v ∈ Rn−r such that Tz ( 0

v ) ∈ Z,

i.e., V v ∈ Z. By definition of V , Im(V ) ∩ span(Z) = {0}. Thus, Ŝ ∩ ker(B̂) ̸= ∅ is equivalent to 0 ∈ Z,

i.e., relint(Z) ̸= ∅ according to Lemma 18 of Section 7.8.

2. By definition of S, int(Ŝ) ̸= ∅ in Rr is equivalent to relint(Z) ̸= ∅ since Tz is invertible.

3. Because Â = T−1
z ATz, λ(A) = λ(Â), and thus the third condition becomes Re(λ(A)) ≤ 0.

4. For i ∈ [[0, n−1]], TzÂiB̂ = Tz
(
T−1
z ATz

)i
B̂ = AiTzB̂ = AiZ because TzB̂ = Z. Hence, Im

(
TzC(Â, B̂)

)
=

Im
(
C(A,Z)

)
. The invertibility of Tz leads to rank

(
C(Â, B̂)

)
= rank

(
C(A,Z)

)
[100].

5. Assume that v̂ is a real eigenvector of Â⊤ associated to the eigenvalue λ̂. Then, v := T−⊤
z v̂ is an

eigenvector of A⊤ associated to the same eigenvalue λ̂ [100]. For ŝ ∈ Ŝ, we have B̂ŝ ∈ S by definition.

Hence, if we define z := TzB̂ŝ, we have z ∈ Z. Then, v̂⊤B̂ŝ = v⊤TzB̂ŝ = v⊤z.

To further expand the applicability of our resilient stabilizability condition, we now remove the requirement

relint(Z) ̸= ∅ from Proposition 20 and obtain a necessary and sufficient condition.

Theorem 19 (Resilient stabilizability condition): System (7.2) is resiliently stabilizable if and only if

rank
(
C(A,Z)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.
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Proof. Let us define the three properties stated in Proposition 20 as P1 :=“relint(Z) ̸= ∅”, P2 :=“System

(7.2) is resiliently stabilizable”, and P3 :=“rank
(
C(A,Z)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector

v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z”. Proposition 20 states that if P1 holds, then P2 is equivalent to P3.

We will now show that when P1 is false, so are P2 and P3, which leads to P2 equivalent to P3 no matter the

status of P1, which is exactly the statement of this theorem.

Assume that P1 is false. Then, according to Lemmas 18, 21, and 22 of Section 7.8, system (7.2) is not

resiliently stabilizable, i.e., P2 is false. We took the convention that Z = [ ] with rank([ ]) = −∞, so P3 is

false too.

Note that the rank condition in Theorem 19 concerns the pair (A,Z) and not (A,B) as one might have

wanted. For the stabilizability of these pairs to be equivalent, we need Z and BU to have the same dimension.

Corollary 4: If dim(Z) = rank(B), then system (7.2) is resiliently stabilizable if and only if rank
(
C(A,B)

)
=

n, Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.

Proof. If Z = ∅, then rank(B) = −∞, i.e., B = []. Thus, system (7.2) is not resiliently stabilizable and

rank
(
C(A,B)

)
̸= n.

Now assume that Z ̸= ∅. From Lemma 20 of Section 7.8 we get Im(B) = Im(Z). Then, Im
(
C(A,B)

)
=

Im
(
C(A,Z)

)
. In the proof of Proposition 20 we had Im

(
C(A,Z)

)
= Im

(
TC(Â, B̂)

)
. Since T is invertible, we

obtain rank
(
C(A,B)

)
= rank

(
C(Â, B̂)

)
, and we conclude with the rest of the proof of Proposition 20.

Notice how the three conditions listed in Corollary 4 are similar to the stabilizability conditions from

Theorem 17. We are then led to the following result.

Corollary 5: If dim(Z) = rank(B), then system (7.2) is resiliently stabilizable if and only if system (7.1) is

stabilizable.

Proof. Let v be a real eigenvector of A⊤. Assume first that there exists z ∈ Z such that v⊤z > 0. By

construction of B, U , and Z, we have Z ⊆ BU ⊆ B̄Ū . Hence, there exists ū ∈ Ū such that z = B̄ū and

v⊤B̄ū > 0.

On the other hand, assume that there exists ū ∈ Ū such that v⊤B̄ū > 0. According to Lemma 20,

span(Z) = Im(B̄). Then, the convexity of Z yields the existence of α ∈ R and z ∈ Z such that B̄ū = αz.

Note that α ̸= 0 by definition of ū. If α > 0, we have v⊤z > 0. Otherwise, α < 0 but we use the symmetry of

Z to obtain −z ∈ Z and v⊤(−z) > 0.

Thus, the condition “there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z” is equivalent to

“there is no real eigenvector v of A⊤ satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū” when dim(Z) = rank(B). According

to Lemma 20 of Section 7.8, Im(B) = Im(B̄). Hence, rank
(
C(A,B)

)
= rank

(
C(A, B̄)

)
. Then, applying

Corollary 4 to system (7.2) and Theorem 17 to system (7.1) concludes the proof.

We have established several resilient stabilizability conditions, hence solving the first half of Problem 10.

We will now tackle its second part concerning affine targets.

7.5 Resilient reachability

In this section we extend Hájek’s duality theorem [23] to affine targets and study the resilience of linear

systems.
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Theorem 20 (Extended duality theorem): The state of system (7.2) can be driven to xtg ∈ Rn at time T for

all w ∈ F(W) by control signal u ∈ F(U) if and only if the state of system (7.6) can be driven to xtg at time

T by a control signal z ∈ F(Z), and Bu(·) = z(·)− Cw(·).

Proof. Consider system (7.2) with a target state xtg ∈Rn, xtg ̸= 0. Let X(t) :=
(
x(t)−xtg

Axtg

)
∈ R2n. Then,

Ẋ(t) = A2X(t) +B2u(t) + C2w(t), X(0) = X0 ∈ R2n, u(t) ∈ U , w(t) ∈ W, (7.8)

with A2 =

(
A In

0n,n 0n,n

)
, B2 =

(
B

0n,m

)
, C2 =

(
C

0n,p

)
and X0 =

(
x0 − xtg

Axtg

)
.

Let the target set be G =
{
( 0
a ) ∈ R2n

}
= {0}n × Rn. Since 0 ∈ C2W, we can apply Hájek’s second

duality theorem of [23] stating that G is resiliently reachable in time T from X0 by system (7.8) if and only if

G is reachable in time T from X0 by the following system

Ẋ(t) = A2X(t) + v2(t), X(0) = X0, v2(t) ∈ V2 := B2U ∩
[
(B2U ⊕ GA2

)⊖ (−C2W)
]
⊆ R2n, (7.9)

where GA2
is the largest subspace of G invariant by A2. Take g = ( 0

a ) ∈ G, then

A2g =

(
A In

0n,n 0n,n

)(
0

a

)
=

(
a

0

)
.

Hence, A2g ∈ G ⇐⇒ a = 0, i.e., GA2 = {0}2n. Thus,

V2 =
{
v ∈ B2U : v − C2w ∈ B2U , for all w ∈ W

}
= Z × {0}n,

because of the architecture of B2 and C2. Then, system (7.9) is related to system (7.6) the same way that

system (7.8) is related to system (7.2). Therefore, the following statements are equivalent:

• xtg is resiliently reachable by system (7.2),

• G is resiliently reachable by system (7.8),

• G is reachable by system (7.9),

• xtg is reachable by system (7.6).

Theorem 20 transforms resilience of system (7.2) into bounded controllability of system (7.6), which we

verify with Theorem 18. We can easily adapt the results of Section 7.4 to the resilience case by reusing the

same proofs, except that we use Theorems 20 and 18 instead of Theorems 16 and 17.

Proposition 21: If int(Z) ̸= ∅, then system (7.2) is resilient if and only if Re(λ(A)) = 0.

Corollary 6: If dim(Z) = rank(B), then system (7.2) is resilient if and only if system (7.1) is controllable.

Theorem 21 (Resilience condition): System (7.2) is resilient if and only if Re
(
λ(A)

)
= 0, rank

(
C(A,Z)

)
= n,

and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.
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We now have all the results necessary to solve Problem 10. However, the condition Re
(
λ(A)

)
= 0 in

Theorem 21 is not satisfied by most systems, that are hence not resilient. This reasoning led us to Problem 11,

i.e., the determination of the resiliently reachable set of system (7.2). Following Theorem 20, we will now

study the reachable set of system (7.6) given by

R(T, x0) :=

{
eAT

(
x0 +

∫ T

0

e−Atz(t) dt

)
with z(t) ∈ Z for all t ∈ [0, T ]

}
.

Because analytical study of R(T, x0) is difficult, most of the research tries to approximate it (see [61] and

references therein). We want inner approximations of R(T, x0) in order to determine the states that are

guaranteed to be resiliently reachable. We will then present a method of zonotopic underapproximation of

R(T, x0) combining the approaches of [61] and [82].

Definition 18: A zonotope S ⊆ Rn is a set parametrized by a center c ∈ Rn and generators g1, . . . , gq ∈ Rn

expressed as S := {c+
∑q
i=1 αigi : αi ∈ [−1, 1]} and is denoted S = (c, g1, . . . gq).

Note that BU is a zonotope of center 0 and generators Bi, the columns of B. Similarly, CW =

(0, C1, . . . , Cp). However, Z is not a zonotope in general since these sets are not closed under Minkowski

difference except for some specific scenarios, as detailed in [82].

Following [82], we build an underapproximation of Z with a symmetric zonotope
(
0, g1, . . . , gr

)
⊆ Z by

removing or contracting the generators of BU . We apply the method described in [61] to compute efficiently

an inner approximation of R(T, x0). For N ∈ N, N ≥ 1, we define

δt :=
T

N
, Ω0 := {x0}, V :=

{∫ δt

0

eA(δt−t)z(t) dt : z(t) ∈ Z for t ∈ [0, δt]

}
,

and the recursion Ωi+1 := eAδtΩi ⊕ V . Note that Ωi is the exact reachable set R(i δt, x0).

However, V is not a zonotope and cannot be computed exactly. Thus, we define the zonotope

Ṽ :=

(
0,

∫ δt

0

eA(δt−t)g1 dt, . . . ,

∫ δt

0

eA(δt−t)gr dt

)
,

and Ṽ ⊆ V since Ṽ corresponds to piecewise constant components of z(t) in
(
0, g1, . . . , gr

)
. Indeed, for ṽ ∈ Ṽ

there exists α1, . . . , αr ∈ [−1, 1] such that

ṽ =

r∑
i=1

αi

∫ δt

0

eA(δt−t)gi dt =

∫ δt

0

eA(δt−t)
r∑
i=1

giαi dt.

Note that
∑r
i=1 giαi ∈

(
0, g1, . . . , gr

)
⊆ Z, so ṽ ∈ V , i.e., Ṽ ⊆ V . Then, we build Ω̃0 = Ω0 = {x0}

and Ω̃i+1 := eAδtΩ̃i ⊕ Ṽ , which yields Ω̃i ⊆ Ωi for all i ≥ 0. Since linear maps and Minkowski sums are

straightforward on zonotopes [61], [82], Ω̃i is an easily computable inner approximation of the reachable set

R(i δt, x0). Note that the precision of the approximation increases with N .

Before implementing this solution to Problem 11 in Section 7.7.1, we need to answer Problem 12 by

quantifying the resilience of linear systems.
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7.6 Quantitative resilience

Let us now investigate more complex missions where the target needs to be reached by a certain time. In

such scenarios it is crucial to evaluate the maximal time penalty incurred by the malfunctioning system.

Unlike in the driftless case [32], the optimal reach times T ∗
N (7.3) and T ∗

M (7.4) cannot be reduced to

a linear optimization and elude analytical expressions [29]. Following [71] and [30] we could numerically

compute these reach times, but not the quantitative resilience rq (7.5) since it would require computing

T ∗
N (x0) and T

∗
M (x0) for all x0 ∈ Rn. Instead, using Lyapunov theory [121], we establish analytical bound on

these two reach times for the target xtg = 0 and analytically approximate rq.

7.6.1 Nominal reach time

Assume that A is Hurwitz. Then, for any Q ≻ 0 there exists P ≻ 0 such that PA+A⊤P = −Q [121]. Let us

consider any such pair (P,Q). We define the Lyapunov function V (x) := x⊤Px = ∥x∥2P [122]. Then, for x

following (7.1) we have

V̇ (x) = ẋ⊤Px+ x⊤Pẋ = x⊤(A⊤P + PA)x+ 2x⊤PB̄ū = −x⊤Qx+ 2x⊤PB̄ū.

We will now bound T ∗
N (x0).

Proposition 22: If system (7.1) is stabilizable and A is Hurwitz, then

T ∗
N (x0) ≥ 2

λPmin

λQmax
ln

(
1 +

λQmax∥x0∥P
2λPminb

P
max

)
, (7.10)

with bPmax := max
{
∥B̄ū∥P : ū ∈ Ū

}
.

Proof. Because Ū is compact and convex, and system (7.1) is stabilizable, there exists a time-optimal control

signal ū∗ ∈ F(Ū) driving the state from x0 to the origin in a finite time T ∗
N (x0) [78].

We now bound V̇ using (7.10). Since P ≻ 0, there exists M ∈ Rn×n such that P = M⊤M [100].

Then, x⊤PB̄ū = (Mx)⊤MB̄ū ≥ −∥Mx∥∥MB̄ū∥, by the Cauchy-Schwarz inequality [100]. Notice ∥Mx∥2 =

x⊤M⊤Mx = x⊤Px = ∥x∥2P . Similarly, ∥MB̄ū∥ = ∥B̄ū∥P .
The maximum bPmax exists since Ū is compact and the map ū 7→ ∥B̄ū∥P is continuous. Since Q ≻ 0, we

have x⊤Qx ≤ λQmax∥x∥2 and ∥x∥2 ≤ ∥x∥2P /λPmin because P ≻ 0. For x ̸= 0, we have now lower bounded

(7.10)

V̇ (x) =
d

dt
∥x∥2P ≥ −λ

Q
max

λPmin
∥x∥2P − 2bPmax∥x∥P . (7.11)

Let y(t) := ∥x(t)∥P , α :=
λQ
max

2λP
min

> 0, and β := bPmax > 0. For x ̸= 0 we divide (7.11) by 2y > 0 so that

ẏ ≥ f(y) := −αy − β. The solution of the differential equation ṡ(t) = f
(
s(t)

)
with s(0) = y(0) is given by

s(t) = e−αt
(
y(0) + β

α

)
− β

α .

Since f is Lipschitz, we can apply the comparison lemma of [122] and we obtain y(t) ≥ s(t) for all t ≥ 0.

At time T = 1
α ln

(
1 + α

β y(0)
)
, we have s(T ) = 0. Because ∥x(t)∥P ≥ s(t) > 0 for all t ∈ [0, T ], we have

T ∗
N (x0) ≥ T . Substituting α and β yields (7.12).

The proof of Propositions 22, as well as subsequent Propositions 23, 24, and 25, is shorter than first

presented in [33] due to our use of the comparison lemma [122]. We now upper bound T ∗
N (x0).

93



Proposition 23: If rank(B̄) = n and A is Hurwitz, then

T ∗
N (x0) ≤ 2

λPmax

λQmin
ln

(
1 +

λQmin∥x0∥P
2λPmaxb

P
min

)
, (7.12)

with bPmin := min
{
∥B̄ū∥P : ū ∈ ∂Ū

}
.

Proof. The minimum bPmin exists since map ū 7→ ∥B̄ū∥P is continuous and ∂Ū is compact. Because

rank(B̄) = n, we can choose ū ∈ F(Ū) such that B̄ū(t) = − x(t)
∥x(t)∥P

bPmin for x(t) ̸= 0. Indeed, assume for

contradiction purposes that for some τ ≥ 0, ū(τ) /∈ Ū , i.e., ∥ū(τ)∥∞ > 1. Let û := ū(τ)
∥ū(τ)∥∞

. Then, ∥û∥∞ = 1,

so û ∈ ∂Ū , but ∥B̄û∥P = ∥B̄ū(τ)∥P

∥ū(τ)∥∞
=

bPmin

∥ū∥∞
< bPmin, which is a contradiction. Hence, the proposed control

signal is admissible and we implement it in (7.10).

We obtain 2x⊤PB̄ū = −2bPmin∥x∥P , so that

d

dt
∥x∥2P = V̇ (x) ≤ −λQmin

λPmax
∥x∥2P − 2bPmin∥x∥P . (7.13)

Let y(t) := ∥x(t)∥P , γ :=
λQ
min

2λP
max

> 0, and κ := bPmin > 0. For x ̸= 0, dividing (7.13) by 2y > 0, yields

ẏ ≤ f(y) := −γy − κ. As in Proposition 22, the comparison lemma of [122] yields

y(t) ≤ s(t) = e−γt
(
y(0) +

κ

γ

)
− κ

γ
for all t ≥ 0 as long as y(t) > 0.

At time T = 1
γ ln

(
1 + γ

κy(0)
)
, s(T ) = 0. Since y

(
T ∗
N (x0)

)
= 0, T ∗

N (x0) ≤ T .

We now bound the malfunctioning reach time T ∗
M following the same method applied to T ∗

N .

7.6.2 Malfunctioning reach time

We use the same Lyapunov function as above, but with x following (7.2), so V̇ (x) = −x⊤Qx+2x⊤P (Bu+Cw).

We can now lower bound T ∗
M as we have done for T ∗

N .

Proposition 24: If system (7.2) is resiliently stabilizable and A is Hurwitz, then

T ∗
M (x0) ≥ 2

λPmin

λQmax
ln

(
1 +

λQmax∥x0∥P
2λPminz

P
max

)
, (7.14)

with zPmax := max
{
∥z∥P : z ∈ Z

}
.

Proof. Since BU and CW are compact, Z is compact [83], so zPmax exists. Since system (7.2) is resiliently

stabilizable, T ∗
M (x0) exists. Let w

∗ ∈ F(W) and u∗ ∈ F(W) be the arguments of the optimizations in (7.4).

By definition of Z, z = Cw∗ +Bu∗ ∈ F(Z). Then, ∥Cw∗(t) +Bu∗(t)∥P ≤ zPmax, which yields

V̇ (x) ≥ −λ
Q
max

λPmin
∥x∥2P − 2zPmax∥x∥P .

We now proceed as in the second half of the proof of Proposition 22 to obtain (7.14).

Similarly, we upper bound the malfunctioning reach time.
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Proposition 25: If int(Z) ̸= ∅ and A is Hurwitz, then

T ∗
M (x0) ≤ 2

λPmax

λQmin
ln

(
1 +

λQmin∥x0∥P
2λPmaxz

P
min

)
, (7.15)

with zPmin := min
{
∥z∥P : z ∈ ∂Z

}
.

Proof. According to Proposition 19, system (7.2) is resiliently stabilizable, hence a finite T ∗
M exists.

Since Z is compact, so is ∂Z, and thus zPmin exists. Because int(Z) ̸= ∅, according to Lemma 17,

0 ∈ int(Z). Then, the convexity of ∥ · ∥P yields
{
z ∈ Rn : ∥x∥P ≤ zPmin

}
⊆ Z, so z(t) := −x(t)

∥x(t)∥P
zPmin ∈ Z.

Let w∗ ∈ F(W) be the argument of the maximum in (7.4). Since z(t) ∈ Z, there exists u ∈ F(U) such
that z(t) = Cw∗(t)+Bu(t). Then, applying w∗ and u leads to an upper bound of T ∗

M since u is not necessarily

optimal, while w∗ is optimal. Hence

V̇ (x) ≤ −λQmin
λPmax

∥x∥2P − 2zPmin∥x∥P .

We now proceed as in the second half of the proof of Proposition 23 to obtain (7.15).

We can now bound T ∗
N (x0)/T

∗
M (x0) for all x0 ∈ Rn and hence obtain an approximate of quantitative

resilience rq which cannot be done with prior algorithms [30], [71] that only compute a single instance of

T ∗
N (x0) or T

∗
M (x0).

7.6.3 Bounding quantitative resilience

If the system’s quantitative resilience rq is bounded by γ ≤ rq, then in the worst case, the malfunctioning

system will take less than 1/γ times longer than the nominal system to reach the origin from the same initial

state.

Theorem 22: If int(Z) ̸= ∅ and A is Hurwitz, then

rq ≥ max

(
λPminλ

Q
min

λPmaxλ
Q
max

,
zPmin
bPmax

)
, (7.16)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. According to Proposition 19, system (7.2) is resiliently stabilizable. Since int(Z) ̸= ∅, we have

dim(Z) = n, and Z ⊆ BU ⊆ Rn yields rank(B) = n. According to Corollary 5, system (7.1) is stabilizable,

so we can use (7.10) and (7.15). We define the positive constants

a :=
λPminλ

Q
min

λPmaxλ
Q
max

, b :=
λQmax

2λPminb
P
max

, and c :=
λQmin

2λPmaxz
P
min

,

so that for x0 ∈ Rn, x0 ̸= 0, (7.10) and (7.15) yield

T ∗
N (x0)

T ∗
M (x0)

≥ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= f(∥x0∥P ).

Then, according to (7.5), rq ≥ inf
x0 ∈Rn

f(∥x0∥P ).
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If b = c, then f(s) = a for all s ≥ 0, so rq ≥ a. If b > c, then f is increasing, so inf
{
f(s) : s > 0

}
= lim
s→0

f(s).

L’Hôpital’s Rule [123] yields

lim
s→0

f(s) = lim
s→0

a
ln(1 + bs)

ln(1 + cs)
= lim
s→0

a
b

1+bs
c

1+cs

=
ab

c
.

Then, f(0) = ab
c =

zPmin

bPmax
> a. If c > b, then f is decreasing, so inf

{
f(s) : s ≥ 0

}
= lim

s→+∞
f(s) = a by

L’Hôpital’s Rule [123]. To sum up, inf
s≥ 0

f(s) = max
(
a, abc

)
≤ rq.

We can upper bound rq using a similar approach.

Theorem 23: If rank(B̄) = n, A is Hurwitz, and system (7.2) is resiliently stabilizable, then

rq ≤ max

(
λPmaxλ

Q
max

λPminλ
Q
min

,
zPmax
bPmin

)
, (7.17)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. With our assumptions we are allowed to use Propositions 23 and 24. We define the positive constants

a :=
λPmaxλ

Q
max

λPminλ
Q
min

, b :=
λQmin

2λPmaxb
P
min

, and c :=
λQmax

2λPminz
P
max

,

so that for x0 ∈ Rn, x0 ̸= 0, (7.12) and (7.14) yield

T ∗
N (x0)

T ∗
M (x0)

≤ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= g(∥x0∥P ).

Then, according to (7.5), rq ≤ inf
x0 ∈Rn

g(∥x0∥P ). This function g is similar to f in the proof of Theorem 22,

and thus rq ≤ inf
x0 ∈Rn

g(∥x0∥P ) = max
(
a, a bc

)
, yielding (7.17).

Note that we used the same pair (P,Q) to bound both T ∗
N and T ∗

M . Employing different pairs (PN , QN )

and (PM , QM ) would make f depend on both ∥x0∥PN
and ∥x0∥PM

. Then, we would need to take x0 ∈ Rn

instead of ∥x0∥P ∈ R+ as the argument of f , which would significantly complicate the minimum search. We

leave this more convoluted approach for possible future work.

Following the discussion at the beginning of this section 7.6, recall that an exact calculation of rq is

impossible. Hence, by deriving bounds on rq with Theorems 22 and 23, we provided a considerable if not

complete solution to Problem 12. We will now apply our theory to two numerical examples.

7.7 Numerical results

We will first study the resilient reachability of the ADMIRE fighter jet model [106], before quantifying the

resilience of a temperature control system.

7.7.1 Resilient reachability of the ADMIRE fighter jet model

The ADMIRE model developed by the Swedish Armed Forces [106] has been used as an application case in

numerous control frameworks [35], [108] and is illustrated on Fig. 7.1.
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Figure 7.1: The ADMIRE fighter jet model. Image modified from [106] with a different color for each
independent actuator.

Relying on the simulation package Admirer4p1 1 we run the ADMIRE simulation in MATLAB and obtain

the linearized dynamics at Mach 0.3 and altitude 2000m. We scale B̄ so that the input set of each actuator

from [106] is scaled to [−1, 1]. The states and matrices of the system Ẋ(t) = AX(t) + B̄ū(t) are given below.

Consider a scenario in which, after sustaining damage, an actuator of the fighter jet starts producing

uncontrolled and possibly undesirable inputs. By studying B̄, we gain intuition on the resilience of the jet.

The effect of the yaw (resp. pitch) thrust vectoring on the yaw (resp. pitch) rate is larger than that of all the

other actuators combined, which gives the intuition that the jet is not resilient to the loss control over thrust

vectoring. None of the other actuators produce such a dominant effect, hence giving the intuition that the jet

is resilient to the loss of control over any one of the first eight actuators.

Following Lemma 22, we test our intuition by verifying whether CW ⊆ BU . These sets are zonotopes

of dimension 9, represented in MATLAB using function zonotope(·) from the CORA package [62]. The

associated function in(·) is employed to verify their inclusion. As expected, CW ⊆ BU for the loss of

control over any one actuator except for the thrust vectoring ones, as shown on Fig. 7.2. Note that for any

projection proj(·), we have proj(CW) ⊈ proj(BU) implies CW ⊈ BU , but proj(CW) ⊆ proj(BU) does not
yield CW ⊆ BU .

The eigenvalues of A are λ(A) =
{
− 2.79,−1.58,−0.18± 1.71i,−0.09,−0.02, 0, 0, 1.23

}
. Hence, none of

the conditions Re(λ(A)) ≤ 0 or Re(λ(A)) = 0 are verified. The system is neither resilient nor resiliently

stabilizable. However, as anticipated with Problem 11, the linearized model is only valid locally and hence we

should only study the resilient reachability of targets close to the linearization equilibrium

Xeq =
(
102.9m/s, 0.12 rad, 0, 0, 0, 0, 0, 0.12 rad, 0

)
.

The state X represents small variations around Xeq, hence X is around 0. For x0 = 0, the center of all

zonotopes Ω̃i stays at 0.

We follow the method detailed in Section 7.5 to approximate the resiliently reachable set of the mal-

functioning system. Assume the pilot lost control over the right outboard elevon ū3. We use the CORA

[62] function minus(·, ·) to underapproximate the Minkowski difference Z = BU ⊖ CW as a zonotope

(0, g1, . . . , g9), following the method of [82]. We take T = 0.2 s, N = 5, δt = T/N , Ω0 = {x0}, and the

1https://github.com/Jean-BaptisteBouvier/ADMIRE
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(a) Yaw thrust vectoring. (b) Pitch thrust vectoring.

Figure 7.2: 2D projection of sets BU (blue) and CW (red) for the loss of control over the two thrust vectoring
actuators.

X =



v

α

β

p

q

r

ψ

θ

φ



velocity (m/s),

angle of attack (rad),

sideslip angle (rad),

roll rate (rad/s),

pitch rate (rad/s),

yaw rate (rad/s),

heading angle (rad),

pitch angle (rad),

roll angle (rad),

A =



−0.02 −4.65 0.37 0 −0.3 0 0 −9.81 0

0 −0.78 0.01 0 0.97 0 0 0 0

0 0 −0.19 0.12 0 −0.98 0 0 0.1

0 0 −15.47 −1.5 0 0.54 0 0 0

0 4.18 −0.01 0 −0.78 0 0 0 0

0 0 0.95 −0.09 0 −0.34 0 0 0

0 0 0 0 0 1.01 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0.12 0 0 0



B̄⊤ =



−0.62 0 0 0.37 0.67 −0.19 0 0 0

−0.62 0 0 −0.37 0.67 0.19 0 0 0

−0.4 −0.02 0 −2.27 −0.55 −0.1 0 0 0

−0.62 −0.04 0.01 −1.96 −0.88 −0.22 0 0 0

−0.62 −0.04 −0.01 1.96 −0.88 0.22 0 0 0

−0.4 −0.02 0 2.27 −0.55 0.1 0 0 0

−0.16 0 0.02 1.59 0 −0.96 0 0 0

0.08 0 0 0 −0.02 0 0 0 0

−0.53 0 0.11 −0.64 0.01 −5.34 0 0 0

−1.78 −0.11 0 0 −6.63 0 0 0 0



right canard,

left canard,

right outboard elevon,

right inboard elevon,

left inboard elevon,

left outboard elevon,

rudder,

leading edge flaps,

yaw thrust vectoring,

pitch thrust vectoring.
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zonotope

Ṽ =

(
0,

∫ δt

0

eA(δt−t)g1 dt, . . . ,

∫ δt

0

eA(δt−t)g9 dt

)
.

Then, we underapproximate R(T, x0) with Ω̃N using the recursion Ω̃i+1 = eAδtΩ̃i ⊕ Ṽ of Section 7.5.

Since the malfunctioning actuator ū3 has a strong impact on the roll rate p of the jet, we want to see

what range of roll rates is reachable. We compute Ω̃1, . . . , Ω̃N and project them in 2D as shown on Fig. 7.3.

Then, in time T the jet can change its roll rate up to ±1.2 rad/s, despite the loss of control over the right

outboard elevon.

Figure 7.3: Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane.

We now study the impact of N , i.e., of δt on the precision of Ω̃N to approximate the real reachable set

R(T, x0) when keeping T constant. Since dim
(
R(T, x0)

)
= 9, we will only study the impact on the range

of roll rates reachable at roll angle ϕ = 0 rad. For δt = 0.1 s the reachable range of roll rate around cN is

±0.37 rad/s = ±21.2◦/s, while for δt = 0.04 s it is ±0.42 rad/s = ±24.1◦/s, and ±0.43 rad/s = ±24.6◦/s

for δt = 0.01 s. Hence, as explained in Section 7.5, decreasing δt gives a wider under approximation of the

reachable set. For N = 2 the reachable range of roll rate is ±0.37 rad/s = ±21.2◦/s, while for N = 5 it is

±0.42 rad/s = ±24.1◦/s, and ±0.43 rad/s = ±24.6◦/s for N = 20, as illustrated on Fig. 7.4. For N = 2 the

reachable range of roll rates is ±0.37 rad/s, while for N = 5 it is ±0.42 rad/s, and ±0.43 rad/s for N = 20,

as illustrated on Fig. 7.3 and 7.4. Hence, as explained in Section 7.5, increasing N raises nonlinearly the

precision of Ω̃N and increases linearly the computational cost since Ω̃N is a zonotope with 9N generators, as

the Minkowski addition of Ṽ adds 9 generators to Ω̃i at each iteration.

Now assume that the in-flight damage responsible for the loss of control over the elevon ū3 also initially

caused it to jerk resulting in a sudden jump in roll rate. Then, instead of X(0) = 0 we have p(0) = 0.44 rad/s

and the goal is to stabilize the jet at the origin Xtg.

We can see on Fig. 7.5 that the target only enters the projection of the reachable set after 4 iterations of

δt = 0.04 s, i.e., for t ≥ 0.16 s. By choosing a smaller δt we can refine the precision on the minimal entering

time. However, to calculate the reachable time T ∗
M (X0, Xtg) we need to use the CORA function in(·) to

verify whether Xtg ∈ Ω̃N since Fig. 7.5 is only a 2D projection of the 9D reachable set and could be deceiving.

Indeed, for p(0) = 0.5 rad/s, the 2D projection is similar to Fig. 7.5 with the red dot inside the projection of

Ω̃N , but Xtg /∈ Ω̃N .

We successfully demonstrated the developed resilience theory and the zonotopic method to underapproxi-

mate the resiliently reachable set of the ADMIRE jet model.
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(a) N = 2. (b) N = 20.

Figure 7.4: Projection of Ω̃1, . . . , Ω̃N on the (ϕ, p) plane for different values of N .

Figure 7.5: Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane. Initial state X0 is the blue dot, target Xtg is the red
dot, and N = 5.
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7.7.2 Temperature control system

We now illustrate our quantitative resilience bounds on a temperature control system motivated by [124] and

illustrated on Fig. 7.6.

T1,1 T1,2 T1,3 T1,l

T2,1 T2,2 T2,3 T2,l

Tk,1 Tk,2 Tk,3 Tk,l

Figure 7.6: Heat exchange graph of an office building with k floors of l rooms, each at a temperature Ti,j .

We study a scenario where a worker remains in their office after hours and manually opens or closes their

door and window, thus overriding the building heat controller which aims at maintaining a target temperature

Ttg. After this loss of control, we will compare our analytical bounds on the nominal and malfunctioning

reach times with the numerical results of [30], [71]. We will also bound the quantitative resilience of the

system which could not be done with prior work and motivated the analytical bounds of Section 7.6.

The controller uses a central heater qh, central AC qAC , and incrementally opens doors qd and windows

qw for room specific adjustments. The controller also takes advantage of solar heating qS , heat losses through

the outside wall ql, and heat transfers between adjoining rooms qadj . The temperature dynamics are then

mCpṪi,j = qh − qAC + qdi,j − qwi,j
+ qSi,j

− qli,j +
∑

qadj

with m the mass of air in each room, Cp its specific heat capacity, qadj = aU(Tadj − Ti,j), with a the area of

the wall between rooms, and U the overall heat transfer coefficient between adjoining rooms, which depends on

the wall materials. To have symmetric inputs, we combine the heat transfers in pairs: qh−qAC =: QhACuhAC ,

qdi,j − qwi,j
=: Qdwu

i,j
dw, and qSi,j

− qli,j =: QSlu
i,j
Sl with uhAC , u

i,j
dw, and u

i,j
Sl ∈ [−1, 1].

We write the dynamics as Ṫ = AT + B̄ū, with

A =
a

mCp


−2U U 0 0 . . . 0 U 0 0 . . .

U −3U U 0 . . . 0 0 U 0 . . .

0
. . .

. . .
. . .

. . .
. . .

 , ū =



u1,1Sl
...

uk,lSl
u1,1dw
...

uk,ldw
uhAC


∈ R2kl+1,

B̄ =
1

mCp

(
QSlIkl,kl QdwIkl,kl QhAC1kl

)
, and T =


T1,1
...

Tk,l

 ∈ Rkl.

To perform numerical calculations, we restrict our building to k = 1 and l = 3, as schematized in Fig. 7.7.
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Ttg Ttg

hallway

outsideSun

T1

qw1

qd1

qg1

qS1

ql1

T2

qw2

qd2

q12

qS2

ql2

T3

qw3

qd3

q23 q3g

qS3

ql3

Figure 7.7: Scheme of the rooms and of the heat transfers. The heater qh and AC transfers qAC are not
shown for clarity.

The objective is to make the rooms 1, 2, and 3 reach target temperature Ttg, which is the temperature of

the neighboring rooms as shown on Fig. 7.7. We write the dynamics as Ṫ = AT + B̄ū+DTtg, with

A =
1

mCp

−Ug1 − U12 U12 0

U12 −U12 − U23 U23

0 U23 −U23 − U3g

 , D =
1

mCp

(
Ug1, 0, U3g

)
,

and x =
(
x1, x2, x3

)
= T − 1Ttg. Then,

ẋ = Ṫ = Ax+ B̄ū+DTtg +A13Ttg = Ax+ B̄ū,

and xtg =
(
0, 0, 0

)
. Taking x := T − Ttg, the heat dynamics of the system illustrated on Fig. 7.7 are

ẋ = Ax + B̄ū with xtg = 0. Based on [124], we use the following values: a = 12m2, mCp = 42186 J/K,

Ug1 = 6.27W/K, U12 = 5.08W/K, U23 = 5.41W/K, U3g = 6.27W/K, QhAC = 350W , Qdw = 300W ,

QSl = 200W , and Ttg = 293K.

Since λ(A) =
{
− 0.052,−0.033,−0.010

}
⊆ R−, A is Hurwitz. Then, according to Theorem 21, the system

is not resilient, but it might be resiliently stabilizable. For the loss of any one column C, rank(B) = 3 and we

numerically verify that −CW ⊆ int(BU). Then, following Lemma 19, dim(Z) = 3, so int(Z) ̸= ∅. According

to Proposition 19, the system is resiliently stabilizable.

The controller wants to cool the building overnight from an initial state x⊤0 =
(
0.8◦C, 0.7◦C, 0.9◦C

)
.

However, a worker is overriding u1dw by manually opening the door and window in room 1. We now compare

the analytical bounds on the nominal and malfunctioning reach times of Section 7.6 with the numerical

results of [30], [71]. Our bounds require pairs P ≻ 0 and Q ≻ 0 solutions of A⊤P + PA = −Q. We generate

randomly a thousand of such pairs (P,Q) and compute bounds on T ∗
N with (7.10) and (7.12), and on T ∗

M with

(7.14) and (7.15). Another way of choosing P relies on the linearization of (7.14), which yields T ∗
M ≥ ∥x0∥P

zPmax
.

This bound is maximized when P ≻ 0 is the tightest ellipsoidal approximation of Z, which results in much

tighter bound than stochastic P , as shown on Fig. 7.8.

For the given x0 the best bounds on the reach times are

35.5 s ≤ T ∗
N (x0) = 42.5 s ≤ 54.1 s,

53 s ≤ T ∗
M (x0) = 110.5 s ≤ 135 s.

Then, the rooms can take up to T ∗
M (x0)/T

∗
N (x0) = 2.6 times longer to all reach Ttg from the initial state

Ttg + x0 after the loss of control authority over u1dw, while our bounds predict a worst-case factor of 3.8.
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Figure 7.8: Bounds on the malfunctioning reach time T ∗
M (x0) in red. The dots are the upper (7.15) and

lower bounds (7.14) for 1000 stochastic pairs (P,Q). The tightest bounds in green and black result from the
ellipsoidal approximations of Z.

The resulting bounds on T ∗
M correspond to the dots on Fig. 7.8. We obtained better bounds when choosing

P ≻ 0 as the tightest ellipsoidal approximation of Z, as shown on Fig. 7.8. Another approach relies on the

fact that for y small, ln(1 + y) ≈ y. Thus, the lower bound of T ∗
M in (7.14) can be approximated by ∥x0∥P

zPmax
.

To maximize this lower bound, we minimize zPmax = max
{
∥z∥P : z ∈ Z

}
, i.e., we choose P ≻ 0 generating

the tightest ellipsoid outer approximation of Z. Similarly, to minimize the upper bound (7.15), we need P

to generate the largest ellipsoid inside Z. Then, we take Q = −A⊤P − PA, but there is no guarantee that

Q ≻ 0.

We were able to compute numerically T ∗
N (x0) [71] and T

∗
M (x0) [30], but accessing rq can only be done

analytically with Theorems 22 and 23. Over all x0 ∈ R3, they predict rq ∈ [0.166, 0.979]. Hence, the loss

of control over u1dw can render the damaged system up to 1/0.166 = 6 times slower to reach the target

temperature from any initial state. This information could not be obtained with prior work and is the

motivation for our analytical bounds in Section 7.6.

If instead of losing control over u1dw a disgruntled worker takes over the central heating/AC unit uhAC , the

rooms can take as much as T ∗
M (x0)/T

∗
N (x0) = 4.7 times longer to reach Ttg from the same initial temperature,

while our bound predicts a max ratio of 9.3. These values are larger than for the loss of u1dw because

QhAC > Qdw and the central heating/AC affects directly all 3 rooms. Additionally, Theorem 22 yields

rq ∈ [0.1, 0.37], so the malfunctioning controller can take between 2.7 and 10 times longer than nominally to

enforce the target temperature from any initial condition.

7.8 Supporting lemmata

In this section we provide supporting results concerning sets BU , CW, and Z defined in Section 7.3.

Lemma 17: The interior of Z is non-empty if and only if 0 ∈ int(Z).

Proof. Since Z is convex and symmetric, so is its interior [125]. If int(Z) ̸= ∅, there exists z ∈ int(Z), by

symmetry −z ∈ int(Z), and 0 ∈ int(Z) by convexity. The reverse implication is trivial.

Lemma 18: The following statements are equivalent: (a) 0 ∈ relint(Z), (b) 0 ∈ Z, (c) Z ̸= ∅, (d) relint(Z) ̸= ∅.

Proof. Since relint(Z) ⊆ Z, we have (a) =⇒ (b) and trivially, (b) =⇒ (c). Since Z is a convex subset of Rn,
(c) =⇒ (d) according to Lemma 7.33 of [1]. Because Z is convex and symmetric, so is its relative interior

according to [125]. Then, the same proof as for Lemma 17 yields (d) =⇒ (a) which completes the proof.
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Definition 19: The dimension of a compact set S is the dimension of the smallest affine subspace (with

respect to inclusion) containing S [1].

Lemma 19: The relative interior of BU contains −CW if and only if dim(Z) = rank(B).

Proof. Let q := dim(BU) ≤ n. Since U = [−1, 1]m−p, its interior is not empty in Rm−p and thus q = rank(B).

Take q linearly independent vectors of BU denoted by Bq := (b1, . . . , bq) and pick V := (vq+1, . . . , vn) ∈
Rn×(n−q) such that Tb := (Bq, V ) is invertible. Then, Tb is a transition matrix with Tbei = bi for i ∈ [[1, q]].

Assume first that −CW ⊆ relint(BU). Then, there exists ε > 0 such that Tb
(
Bq(0, ε)×{0}n−q

)
⊕−CW ⊆

BU . Informally, −CW remains in BU when it is ’extended’ by ε in all q dimensions of BU . Because

Z =
{
z ∈ Rn : {z}⊕−CW ⊆ BU

}
, we have Tb

(
Bq(0, ε)×{0}n−q

)
⊆ Z. Then, q ≤ dim(Z). Since 0 ∈ −CW ,

Z ⊆ BU , and hence dim(Z) ≤ q. Thus, dim(Z) = q = rank(B).

On the other hand, assume that dim(Z) = q. Since 0 ∈ −CW, Z ⊆ BU . Then, Z being of same

dimension and included in BU yields that (b1, . . . , bq) is also a basis of span(Z) = Im(B). Hence, Tb is a

transition matrix from Rn to span(Z). According to Lemma 18, 0 ∈ relint(Z), i.e, there exists δ > 0 such

that Tb
(
Bq(0, δ)× {0}n−q

)
⊆ Z. As above, the definition of Z yields Tb

(
Bq(0, δ)× {0}n−q

)
⊕ (−CW) ⊆ BU .

Because dim(Bq(0, ε)) = q = dim(BU), we have −CW ⊆ relint(BU).

Lemma 20: If dim(Z) = rank(B), then span(Z) = Im(B) = Im(B̄).

Proof. In the proof of Lemma 19 we showed that span(Z) = Im(B). The inclusion −CW ⊆ relint(BU) holds
according to Lemma 19 and yields Im(C) ⊆ Im(B), and since B̄ = [B C] after adequate column permutations,

we have Im(B̄) = Im([B C]) = Im(B).

Lemma 21: Set Z is empty if and only if set CW is not entirely included in BU , i.e., Z = ∅ ⇐⇒ CW ⊈ BU .

Proof. If Z = ∅, then by definition, for all z ∈ BU , there exists w ∈ W such that z − Cw /∈ BU . Taking

z = 0 yields CW ⊈ BU .
On the other hand, assume that there exists w ∈ W such that Cw /∈ BU . Assume for contradiction

purposes that Z ̸= ∅. Then, we can take z ∈ Z and z − Cw ∈ BU . Since BU is symmetric, we thus have

−z + Cw ∈ BU . Because z ∈ Z and −w ∈ W, we also have z + Cw ∈ BU . The convexity of BU yields
1
2 (−z + Cw) + 1

2 (z + Cw) ∈ BU , i.e., Cw ∈ BU which contradicts our first assumption. Hence, Z = ∅.

Lemma 22: If CW ⊈ BU , then system (7.2) is not resiliently stabilizable.

Proof. Since CW ⊈ BU , there exists w ∈ W such that Cw /∈ BU . The sets {Cw} and BU are nonempty,

disjoint, convex, and compact, hence they are strongly separated according to Theorem 5.79 of [1]. Then, there

exists v ∈ Rn, v ̸= 0, c > 0, and ε > 0 such that ⟨Cw, v⟩ ≥ c+ ε, and for all u ∈ U , ⟨Bu, v⟩ ≤ c− ε. Because

BU and CW are symmetric, {−Cw} and BU are also strongly separated by the symmetric hyperplane:

⟨−Cw, v⟩ ≤ −c− ε and for all u ∈ U , ⟨Bu, v⟩ ≥ −c+ ε.

If A ̸= 0, then ∥A∥ > 0. Since v ̸= 0, we can define r := ε
∥v∥ ∥A∥ > 0. We will show that if x ∈ Bn(0, r),

then no controls u ∈ U can bring the state x closer to the origin. Let x ∈ Bn(0, r) and first assume that

⟨x, v⟩ ≥ 0. Then, we apply the undesirable input w and any control u ∈ U to system (7.2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨Cw, v⟩ ≥ −∥Ax∥ ∥v∥ − c+ ε+ c+ ε ≥ −∥A∥ ∥x∥ ∥v∥+ 2ε ≥ ε,
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Figure 7.9: Illustration of the strong separation of sets BU (blue) and {±Cw} (green) by symmetric
hyperplanes.

where we used the Cauchy-Schwarz inequality [100], the definition of ∥A∥ and ∥x∥ ≤ r. Similarly, if ⟨x, v⟩ < 0,

we apply the undesirable input −w and any control u ∈ U to system (7.2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨−Cw, v⟩ ≤ ∥A∥ ∥x∥ ∥v∥+ c− ε− c− ε ≤ r∥A∥ ∥v∥ − 2ε = −ε.

Thus, the state x ∈ Bn(0, r) can be pushed away from the origin along v. Hence, system (7.2) is not

stabilizable.

If A = 0, we can take any x ∈ Rn such that ⟨x, v⟩ ≥ 0 (resp. ≤ 0) and obtain ⟨ẋ, v⟩ ≥ 2ε (resp. ≤ −2ε)

so the same conclusion holds.

7.9 Summary

This chapter established novel necessary and sufficient conditions for the resilient stabilizability of linear

systems with drift. We also extended Hájek’s duality theorem [23] in order to study the resilient reachability

of affine targets. We then used zonotopic underapproximations of reachable sets to determine what states are

guaranteed to be resiliently reachable. Finally, we employed Lyapunov theory [121] to quantify the resilience

of control systems to the loss of authority over some of their actuators.
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Chapter 8

Extensions of Resilience Theory

8.1 Introduction

This chapter is taken from our work [39] and is a first step towards Problem 4. In the previous chapters,

we only considered systems with a resilience reachability mission. We also assumed that the controller had

immediate knowledge of the undesirable inputs. Additionally, all the work accomplished so far only concerned

linear dynamics. In this chapter, we will lift these three restrictive and simplifying assumptions in order to

extend the scope of resilience theory as prescribed by Problem 4.

The contributions of this chapter are threefold. In Section 8.2, we extend resilience from the simple

objective of resilient reachability to the more complex and more realistic aim of resilient trajectory tracking. In

Section 8.3, we remove one of the main simplifying assumptions of resilience theory, namely the instantaneous

knowledge of the undesirable input by the controller. Finally, in Section 8.4 we present a partial extension of

resilience theory to nonlinear systems.

8.2 Resilient trajectory tracking

In this section, we assume that the mission of the nominal system under study is not to simply reach a target,

but instead to follow a given reference trajectory Tref :=
{
xref(t), t ≥ 0

}
. We will then aim at deriving

conditions under which a linear system affected by a partial loss of control authority over its actuators can

resiliently follow trajectory Tref.
Following Chapter 7, we study a linear system of initial dynamics

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, ū(t) ∈ Ū , (8.1)

where Ū is an hyperrectangle in Rm+q and A ∈ Rn×n, B̄ ∈ Rn×(m+q) constant matrices. After some

malfunction, system (8.1) suffers a loss of control authority over q of its m+ q actuators. We then split the

signal ū into its controlled part u ∈ F(U) and its uncontrolled part w ∈ F(W) with U and W hyperrectangles

in Rm and Rq respectively. Matrix B̄ is accordingly split into B ∈ Rn×m and C ∈ Rn×q such that the

dynamics of the malfunctioning system are

ẋ(t) = Ax(t) + Cw(t) +Bu(t), x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W. (8.2)
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Following the method detailed in Chapter 7, we study the resilience of system (8.2) with the results built on

Hájek’s theory [23] and relying on the modified dynamics

ẋ(t) = Ax(t) + z(t), x(0) = x0 ∈ Rn, z(t) ∈ Z := BU ⊖ (−CW). (8.3)

Note that Z represents the amount of control authority remaining to the malfunctioning system (8.2) after

counteracting the worst undesirable input. We now assume to be in possession of the reference inputs zref to

track reference trajectory Tref with dynamics (8.3), i.e., Tref =
{
xref(t) : ẋref(t) = Axref(t) + zref(t), t ≥ 0

}
with zref ∈ F(Zref).

The initial state of the malfunctioning system x0 is most likely not exactly equal to xref(0), the initial

state of reference trajectory Tref, which was designed before the malfunction occurred. We then need to

design a tracking controller with robustness to uncertainty on the initial state. Moreover, if the difference

x0 − xref(0) is not actively reduced, it can grow exponentially with time [122]. Thus, we need some extra

control capability to counteract x(t)− xref(t).

Formally, we define Zε as a compact set of Rn satisfying 0 ∈ relint(Zε) and dim(Zε) = n. Input set Zε
will be tasked with counteracting x(t) − xref(t). For the robust tracking of Tref to be admissible, we then

need Zε ⊕Zref ⊆ Z. We now introduce the dynamics tasked with counteracting the initial state error

ẏ(t) = Ay(t) + zε(t), y(0) = x0 − xref(0), zε(t) ∈ Zε. (8.4)

Proposition 26: If Zε ⊕ Zref ⊆ Z and system (8.4) is stabilizable in a finite time tf , then the reference

trajectory Tref can be tracked exactly by system (8.2) after time tf , i.e., x(t) = xref(t) for all t ≥ tf .

Proof. Since system (8.4) is stabilizable in a finite time tf , there exists a signal zε ∈ F(Zε) on [0, tf ] yielding

y(tf ) = 0 in system (8.4). Since 0 ∈ Zε, we extend the control signal to zε(t) = 0 for all t > tf . We now

define the control law ztrack(t) := zε(t) + zref(t). Since, Zε ⊕Zref ⊆ Z, we have ztrack(t) ∈ Z for all t ≥ 0.

Let w ∈ F(W) be any undesirable input signal. Then, by definition of Z, there exists u ∈ F(U) such that

Bu(t) = ztrack(t)− Cw(t) for all t ≥ 0. We now implement this controller for T ≥ tf in system (8.2):

x(T ) = eAT

(
x0 +

∫ T

0

e−At
(
Bu(t) + Cw(t)

)
dt

)
= eAT

(
x0 +

∫ T

0

e−At
(
zε(t) + zref(t)

)
dt

)

= eAT

(
x0 +

∫ T

0

e−Atzε(t) dt+ e−ATxref(T )− xref(0)

)
,

because xref(T ) = eAT
(
xref(0) +

∫ T
0
e−Atzref(t)dt

)
. Then,

x(T )− xref(T ) = eAT

(
x0 − xref(0) +

∫ T

0

e−Atzε(t) dt

)
= eAT

(
x0 − xref(0) +

∫ tf

0

e−Atzε(t) dt

)
,

since zε(t) = 0 for t > tf . By definition of zε,

y(tf ) = 0 = eAtf
(
y(0) +

∫ tf

0

e−Atzε(t) dt

)
, i.e., x0 − xref(0) +

∫ tf

0

e−Atzε(t) dt = 0.

Therefore, x(T ) = xref(T ) for all T ≥ tf .
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Proposition 26 states that as long as Zε+Zref ⊆ Z, there exists a finite time tf after which any trajectory

Tref can be tracked perfectly despite the loss of control authority over a thruster. Since Zε is the input set

of system (8.4), the size of Zε is inversely correlated with the stabilization time tf . Then, the constraint

Zε +Zref ⊆ Z yields that the smaller Zref, the larger Zε and so the smaller tf is. In other words, the smaller

the inputs required to track the reference trajectory, the faster the system can resume perfect tracking after a

loss of control authority.

Lemma 23: Let Zε ∈ Rn×d be a matrix whose columns are d linearly independent vectors of Zε, with d =

dim(Z) = dim(Zε). System (8.4) is stabilizable in a finite time if and only if Re(λ(A)) ≤ 0, rank(C(A,Zε)) = n

and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Zε.

Proof. By construction Im(Zε) = span(Zε), so that C(A,Zε) is a controllability matrix associated with

system (8.4). We made the assumption that 0 ∈ relint(Zε), so we can apply Proposition 20 which guarantees

that system (8.4) is stabilizable in finite time.

We now have a condition to verify whether resilient trajectory tracking is possible. This also allows to

fulfill resilient reach-avoid objectives, where some areas of the state space are judged unsafe and should not

be entered. With resilient reachability, we had no control over the trajectory of the malfunctioning system

between the two end points, which could have resulted in entering unsafe areas. With resilient trajectory

tracking, we only need to design a safe trajectory that the malfunctioning system can follow and it will avoid

the unsafe regions. Let us now investigate how the system would perform if the controller could not react

instantly to undesirable inputs.

8.3 Resilience in the presence of actuation delay

In order to account for the unavoidable sensors and actuators delays present on any system [25]–[27], we now

assume that the controller of system (8.2) operates with a constant input delay τ > 0. Then, the dynamics of

this malfunctioning system become

ẋ(t) = Ax(t) + Cw(t) +Bu
(
t, x(t− τ), w(t− τ)

)
, x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W. (8.5)

The controller cannot react immediately to a change of the undesirable input w(t) and cancel it instantaneously

as in the previous chapters. Note that in (8.5), the controller has also a delayed knowledge of the state.

Indeed, if the controller u(t) knows x(t), with its knowledge of A, B and C it would be able to reconstruct

w(t), which should not be possible. Therefore, the controller must have a delayed knowledge of the state.

8.3.1 Framework for actuation delay

Let us plant the framework to study resilient reachability by system (8.5).

Definition 20: A convex set G ⊆ Rn is resiliently reachable at time T from x0 by system (8.5) if for all

undesirable inputs w ∈ F(W) there exists a control signal u ∈ F(U) such that u(t) = u
(
t, x(t− τ), w(t− τ)

)
and x(T ) ∈ G.

Only starting at t+ τ can the controller try to counteract Cw(t). However, at time t+ τ the effect of w(t)

on the state x(t+ τ) has become eAτCw(t). Hence, set Z introduced in (8.3) does not describe the remaining

control authority anymore.
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Generalizing works [23], [33] we introduce the family of sets Zt := BU ⊖ (−eAtCW) for all t ≥ 0 with

eAtCW :=
{
eAtCw : w ∈ W

}
. We will show that Zτ is the set of actual control inputs of system (8.5), when

u has canceled any undesirable input w with a delay τ . Set Zτ is the time delayed extension of Z from (8.3).

Definition 21: The minimal correction time Tc represents the minimal time after which any undesirable

input can be counteracted, Tc := inf
{
t ≥ τ : Zt ̸= ∅

}
.

If Tc = +∞, then the impact on the state of some undesirable inputs cannot be canceled by any control

input after the actuation delay, i.e., there exists some w ∈ W such that −eAtCw /∈ BU for all t ≥ τ . In this

case, resilient reachability is impossible according to Lemma 22. Let us now assume that Tc is finite in order

to build the theory for resilience in the presence of actuation delay.

8.3.2 Resilient reachability despite actuation delay

We want to know whether a target set G ⊆ Rn is resiliently reachable by system (8.5). Because of the

actuation delay τ , the controller can only guarantee that x(t) is in some neighborhood of x(t− τ), it cannot

ensure an exact location. Then, set G needs a minimal radius ρ > 0 to be resiliently reachable. Inspired by

Hájek’s approach [23], we introduce system (8.6) as a counterpart to system (8.5), just like system (8.3) was

the counterpart of system (8.2) for the spacecraft without actuation delay.

ẋ(t) = Ax(t) + z(t), x(0) = eATcx0, z(t) ∈ ZTc
:= BU ⊖ (−eATcCW). (8.6)

Note that the input z of system (8.6) does not suffer from actuation delay by design of ZTc
.

Theorem 24: [Resilient reachability with actuation delay] If there exists xg ∈ G such that B(xg, ρ) ⊆ G and

xg is reachable in a finite time T by system (8.6), then G is resiliently reachable by system (8.5) in time

T + Tc, with ρ := c
µ(A)

(
eµ(A)Tc − 1

)
and c := max

{
∥Cw∥ : w ∈ W

}
.

Proof. We first introduce the log-norm of matrix A defined in [105] as µ(A) := max
{
λ((A+A⊤)/2)

}
. Then,

∥eAt∥ ≤ eµ(A)t for all t ≥ 0 according to. Since T is the time at which system (8.6) can reach xg from eATcx0,

there exists z(s) ∈ ZTc
for all s ∈ [0, T ] such that

xg = x(T ) = eAT

(
eATcx0 +

∫ T

0

e−Asz(s) ds

)
, i.e., eAT

∫ T

0

e−Asz(s) ds = xg − eA(T+Tc)x0.

Let w ∈ F(W) be some undesirable input affecting system (8.5). We now define the corresponding control

input u ∈ F(U) so that it satisfies: Bu(t) = 0 for t ∈ [0, Tc] and Bu(t) = z(t − Tc) − eATcCw(t − Tc) for
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t ∈ [Tc, T + Tc]. Note that u(t) ∈ U by definition of z(t) ∈ ZTc . We apply this control law to system (8.5):

x(T + Tc) = eA(T+Tc)

(
x0 +

∫ T+Tc

0

e−AtCw(t) dt+

∫ T+Tc

0

e−AtBu(t)dt

)

= eA(T+Tc)

(
x0 +

∫ T+Tc

0

e−AtCw(t) dt+

∫ T+Tc

Tc

e−At
(
z(t− Tc)− eATcCw(t− Tc)

)
dt

)

= eA(T+Tc)

(
x0 +

∫ T+Tc

0

e−AtCw(t) dt+

∫ T

0

e−A(s+Tc)
(
z(s)− eATcCw(s)

)
ds

)

= eA(T+Tc)

(
x0 +

∫ T+Tc

T

e−AtCw(t)dt

)
+ eAT

∫ T

0

e−Asz(s)ds

= eA(T+Tc)x0 +

∫ Tc

0

eAsCw(T + Tc − s)ds+
(
xg − eA(T+Tc)x0

)
= xg +

∫ Tc

0

eAsCw(T + Tc − s)ds,

thanks to the definition of z(s) ∈ ZTc . Then, by subtracting xg and using the triangle inequality we obtain

∥∥x(T + Tc)− xg
∥∥ ≤

∫ Tc

0

∥∥eAs∥∥∥∥Cw(T + Tc − s)
∥∥ds ≤ ∫ Tc

0

eµ(A)sc ds =
c

µ(A)

(
eµ(A)Tc − 1

)
= ρ.

Since B(xg, ρ) ⊆ G, we have x(T+Tc) ∈ G. Hence, G is resiliently reachable by system (8.5) in time T+Tc.

Note that the control z(t− Tc) responsible for steering to xg in Theorem 24 is in fact an open loop control.

A feedback control may perform better in practice, but the saturation enforcing that such signal remains

bounded in ZTc
would lead to a substantial increase in complexity of the proof.

Theorem 24 provides a sufficient resilient reachability condition for delayed system (8.5) in terms of the

reachability of G by system (8.6). In turn, a sufficient condition for this last property can be verified with the

lemma below.

Lemma 24: Let Z ∈ Rn×d be a matrix whose columns are d linearly independent vectors of ZTc
with

d := dim(ZTc
) ≥ 0. If 0 ∈ int(ZTc

), then system (8.6) is controllable if and only if Re(λ(A)) = 0,

rank(C(A,Z)) = n, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ ZTc
.

Proof. By construction, Im(Z) = span(ZTc
) so that C(A,Z) is a controllability matrix associated with

system (8.6). Since U and W are convex, so are BU and eATcCW. Their Minkowski difference ZTc
is then

also convex [83]. Then, 0 ∈ int(co(ZTc
)) and trivially 0 ∈ Ker(In) ∩ ZTc

. These two inclusions allow us to

apply Corollary 3.7 of [91] which yields the controllability condition.

Thus, combining Lemma 24 and Theorem 24 provides a sufficient condition for resilient reachability in

the presence of actuation delay. We will now investigate the more complicated problem of resilient trajectory

tracking despite actuation delay.

8.3.3 Resilient trajectory tracking despite actuation delay

We want system (8.5) to track the actuated reference trajectory Tref designed for system (8.6) by Tref :={
xref(t) : ẋref(t) = Axref(t) + zref(t), for all t ≥ 0

}
with zref ∈ F(Zref). We also define Zε as a compact set of

Rn satisfying 0 ∈ relint(Zε) and dim(Zε) = n. As in Section 8.2, we use input set Zε to counteract the error
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arising from x0 ̸= xref(0) through the dynamics

ẏ(t) = Ay(t) + zε(t), y(0) = eATc
(
x0 − xref(0)

)
, zε(t) ∈ Zε. (8.7)

We can then state our resilient trajectory tracking result.

Theorem 25: If Zε ⊕ Zref ⊆ ZTc and system (8.7) is stabilizable in a finite time tf , then the reference

trajectory Tref can be tracked by system (8.5) with a precision ρ after time tf + Tc, i.e., ∥x(T )− xref(T )∥ ≤ ρ

for all T ≥ tf + Tc.

Proof. Since system (8.7) is stabilizable in a finite time tf , there exists a signal zε(t) ∈ Zε for all t ∈ [0, tf ]

yielding y(tf ) = 0. Because 0 ∈ Zε, we can extend signal zε with zε(t) = 0 for all t > tf . Let w ∈ F(W) be

the undesirable input signal. Since Zε ⊕Zref ⊆ ZTc
= BU ⊖ (−eATcCW), there exists u ∈ F(U) such that

Bu(t) = zref(t) + zε(t− Tc)− eATcCw(t− Tc) for all t ≥ Tc.

Indeed, the reference trajectory is known ahead of time, so u(t) has access to zref(t). We define u to satisfy

Bu(t) = zref(t) for t ∈ [0, Tc]. We now implement this controller for T ≥ Tc in system (8.5)

x(T ) = eAT

(
x0 +

∫ Tc

0

e−AtBu(t) dt+

∫ T

Tc

e−AtBu(t) dt+

∫ T

0

e−AtCw(t) dt

)

= eAT

(
x0 +

∫ Tc

0

e−Atzref(t) dt+

∫ T

Tc

e−At
(
zref(t) + zε(t− Tc)− eATcCw(t− Tc)

)
dt+

∫ T

0

e−AtCw(t) dt

)

= eAT

(
x0 +

∫ T

0

e−Atzref(t) dt+

∫ T−Tc

0

e−As
(
e−ATczε(s)− Cw(s)

)
ds+

∫ T

0

e−AtCw(t) dt

)

= eAT

(
x0 + e−ATxref(T )− xref(0) + e−ATc

∫ T−Tc

0

e−Aszε(s) ds+

∫ T

T−Tc

e−AtCw(t) dt

)
,

by definition of zref. Then,

x(T )− xref(T ) = eA(T−Tc)

(
eATc

(
x0 − xref(0)

)
+

∫ T−Tc

0

e−Aszε(s) ds

)
+

∫ Tc

0

eAsCw(T − s) ds. (8.8)

Note that the last integral term is the same as in Theorem 24 and hence can be bounded similarly:∥∥∥∥∥
∫ Tc

0

eAsCw(T − s) ds

∥∥∥∥∥ ≤
∫ Tc

0

∥∥eAs∥∥∥∥Cw(T − s)
∥∥ ds ≤ c

∫ Tc

0

eµ(A)sds = ρ.

Since zε stabilizes system (8.7) in time tf , we have y(T ) = 0 for all T ≥ tf . In particular, for T ≥ tf + Tc we

obtain

y(T − Tc) = 0 = eA(T−Tc)

(
y(0) +

∫ T−Tc

0

e−Aszε(s) ds

)
.

Note that y(T − Tc) is exactly the central term in (8.8), which finally yields
∥∥x(T )− xref(T )

∥∥ ≤ ρ.

Without control signal zε, the tracking error would be ∥x(t)− xref(t)∥ ≤ ρ+
∥∥eAt(x0 − xref(0)

)∥∥, which
can grow exponentially if x0 − xref(0) is collinear with a positive eigenvector of A. When x0 = xref(0), we do

not need zε and the tracking can be performed with precision ρ from time Tc onward.
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Theorem 25 provides a sufficient condition for resilient trajectory tracking by delayed system (8.5) in

terms of the finite time stabilizability of system (8.7). In turn, this property can be verified with the lemma

below.

Lemma 25: Let Zε ∈ Rn×d be a matrix whose columns are d linearly independent vectors of Zε, with
d = dim(ZTc) = dim(Zε). System (8.7) is stabilizable in a finite time if and only if Re(λ(A)) ≤ 0,

rank(C(A,Zε)) = n and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Zε.

Proof. By construction Im(Zε) = span(Zε), so that C(A,Zε) is a controllability matrix associated with

system (8.7). We made the assumption that 0 ∈ relint(Zε), so we can apply Proposition 20 which guarantees

that system (8.7) is stabilizable in finite time.

We have now established sufficient conditions for resilient reachability and resilient trajectory tracking

for linear systems in the presence of actuation delay. Thus, resilience theory does not require anymore the

simplifying assumption of instantaneous knowledge of the undesirable input by the controller. We will now

investigate how to extend resilience theory to nonlinear dynamics.

8.4 Resilience of nonlinear systems

In this dissertation we established resilient reachability conditions for linear systems with energy bounded

inputs in Chapter 3 and for linear systems with amplitude bounded inputs in Chapter 7. These two approaches

relied respectively on the reachability condition of [24] and on the duality theorem of [23]. However, both of

these results were established for linear systems and their proofs actually require linear dynamics. Resilience

theory would then need novel proofs of these two results to extend to nonlinear dynamics.

When studying the proof of Hájek’s duality theorem [23], we notice that the two implications constituting

the equivalence result are very different. Indeed, one of these implications is straightforward, while the other

one requires a complex use of linearity. Then, we can extend one of the implications of Hájek’s duality

theorem [23] to nonlinear dynamics.

Consider the two following systems of state x ∈ Rn:

ẋ(t) = f
(
t, x(t)

)
+ g
(
t, x(t)

)[
Bu(t) + Cw(t)

]
, x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W, (8.9)

ẋ(t) = f
(
t, x(t)

)
+ g
(
t, x(t)

)
z(t), x(0) = x0 ∈ Rn z(t) ∈ Z := BU ⊖ (−CW), (8.10)

with f and g piecewise continuous in t and locally Lipschitz in x, constant matrices B ∈ Rn×m and C ∈ Rn×p,
and compact sets U ⊆ Rm and W ⊆ Rp.

Theorem 26: If system (8.10) is controllable, then system (8.9) is resilient.

Proof. Let x0 ∈ Rn, xgoal ∈ Rn and w ∈ F(W). Since system (8.10) is controllable, there exists T ≥ 0

and z ∈ F(Z) driving the state of system (8.10) from x0 to xgoal in time T . By definition of Z, there

exists u ∈ F(U) such that Bu(t) = z(t)− Cw(t) for all t ∈ [0, T ]. Then, applying input signals u and w to

system (8.9) drives its state from x0 to xgoal in time T . Since we found such a u for any w, system (8.9) is

resilient.

Note that the reverse implication of Theorem 26 holds for linear systems [23] but remains an open question

for nonlinear dynamics. Note that Theorem 26 might not be extremely useful in practice since verifying the
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controllability of nonlinear system (8.10) is a difficult problem [111]. However, we can deduce immediately

two corollaries of Theorem 26 with the exact same proof that might be much more practical.

Corollary 7: If system (8.10) is stabilizable, then system (8.9) is resiliently stabilizable.

Corollary 8: If target xg ∈ Rn is reachable in time T by system (8.10), then xg is resiliently reachable in

time T by system (8.9).

We then have obtained several sufficient conditions for nonlinear resilient reachability.

8.5 Summary

In this chapter, we first extended resilience theory to cover trajectory tracking objectives. Then, we removed

the main simplifying assumption of this theory by taking into account the realistically unavoidable delays

affecting the knowledge of the undesirable input by the controller. Finally, we introduced a partial extension

of resilience theory to nonlinear systems.
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Chapter 9

Resilience of Linear Networks

9.1 Introduction

Resilience to catastrophic events is a crucial infrastructural challenge, recognized across populations and

government levels [126], [127]. Natural disasters, terrorist acts, and widespread power failures all have the

potential to rapidly deteriorate the infrastructure’s capabilities to meet population needs. Inability to adapt

to such events in real time also impedes emergency services, evacuation, and supply chain operations. The

need for resilience — already amply displayed during natural disasters in past decades [128] — is made

stronger with growing reliance on cyber-physical systems for control of infrastructure. For instance, a team

of security researchers recently demonstrated the capability to influence traffic signals over the internet in at

least ten cities [129], potentially causing system-wide disorder in the cities’ traffic flows. Motivated by these

examples of networks failures and encouraged by Problem 4, we will extend resilience theory to the study of

linear networks based on our work [40].

Following a catastrophic natural event or an adversarial attack, the network under study endures a partial

loss of control authority [53] over the actuators of one of its subsystems. This malfunction consists in some of

the actuators of the malfunctioning subsystem to produce uncontrolled and thus possibly undesirable inputs

with their full capabilities. We already have the theory to verify whether this isolated subsystem is resilient to

its loss of control authority. However, the network framework raises different and more interesting questions,

such as: is the subsystem resilient despite/thanks to its connection with the rest of the network? and how is

the rest of the network affected by this malfunctioning subsystem? In this chapter, we will try to answer

these questions.

The contributions of this chapter are threefold. First, we establish stabilizability and controllability

conditions for networks of linear systems. Second, we build resilience conditions for networks with a subsystem

suffering a partial loss of control authority over its actuators. Third, we quantify how unresilient can a

subsystem be so as not to destabilize the whole network after a loss of control authority in said subsystem.

The remainder of this chapter is organized as follows. Section 9.2 introduces the network dynamics and

states our problems of interest. Section 9.3 builds on Chapter 7 to establish necessary and sufficient conditions

for the resilient stabilizability of linear systems. Armed with these results, we are then able to study the

resilient stabilizability of networks of N subsystems in Section 9.4.
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9.2 Networks preliminaries

Inspired by [130], we consider a network of N ≥ 2 linear subsystems of dynamics

ẋ1(t) = A1x1(t) + B̄1ū1(t) +
∑
k∈N1

L1,kyk(t), y1(t) = F1x1(t), x1(0) = x01 ∈ Rn1 , (9.1-1)

...
...

...

ẋN (t) = ANxN (t) + B̄N ūN (t) +
∑

k∈NN

LN,kyk(t), yN (t) = FNxN (t), xN (0) = x0N ∈ RnN , (9.1-N)

where xi ∈ Rni , ūi ∈ Rmi and yi ∈ Rqi are respectively the state, the control input and the output of

subsystem i ∈ [[1, N ]]. Additionally, Ni ⊆ [[1, N ]] is the set of neighbors of subsystem i with i /∈ Ni, while

Ai ∈ Rni×ni , B̄i ∈ Rni×mi , Li,k ∈ Rni×qi and Fi ∈ Rqi×ni are constant matrices. The set of admissible

control inputs for subsystem i is the unit hypercube of Rmi , i.e., ūi(t) ∈ Ūi := [−1, 1]mi . To alleviate

the notations, we introduce matrices Di,k := Li,kFk to represent the connection of subsystems i and k for

i ∈ [[1, N ]] and k ∈ Ni. Then,

ẋ1(t) = A1x1(t) + B̄1ū1(t) +
∑
k∈N1

D1,kxk(t), x1(0) = x01 ∈ Rn1 , (9.2-1)

...
...

...

ẋN (t) = ANxN (t) + B̄N ūN (t) +
∑

k∈NN

DN,kxk(t), xN (0) = x0N ∈ RnN . (9.2-N)

We are interested by the properties of stabilizability and controllability of network (9.2) and how they

derive from the stabilizability and controllability of each of its subsystems.

Definition 22: Tuple (Ai, B̄i, Ūi) is stabilizable (resp. controllable) if there exists an admissible control signal

ūi ∈ F(Ūi) driving the state of system ẋi(t) = Aixi(t) + B̄iūi(t) from any xi(0) ∈ Rni to 0 ∈ Rni (resp. to

any xgoal ∈ Rni).

Following Definition 22, the stabilizability and controllability of tuple (Ai, B̄i, Ūi) characterize subsystem

i isolated from its neighbors. These are local properties from which we will want to derive the associated

overall network properties. To do so, we define the network state X :=
(
x1, x2, . . . , xN

)
∈ RnΣ with

nΣ := n1 + . . .+ nN , and the network control input ū(t) :=
(
ū1(t), . . . , ūN (t)

)
∈ Ū := Ū1 × . . .× ŪN ⊆ RmΣ

with mΣ := m1 + . . .+mN . Network dynamics (9.2) can then be written more concisely as

Ẋ(t) = (A+D)X(t) + B̄ū(t), X(0) = X0 =
(
x01, . . . , x

0
N

)
∈ RnΣ , (9.3)

with the constant matrices A := diag(A1, . . . , AN ), B := diag(B̄1, . . . , B̄N ) and D :=
(
Di,j

)
(i,j)∈[[1,N ]]

with

Di,k = 0 if k /∈ Ni and Di,i = 0 for all i ∈ [[1, N ]].

Definition 23: Network (9.3) is stabilizable (resp. controllable) if tuple
(
A+D, B̄, Ū

)
is stabilizable (resp.

controllable).

We can then state our first problem of interest.

Problem 13: Assuming that each tuple (Ai, B̄i, Ūi) is stabilizable (resp. controllable), under what conditions
is network (9.3) stabilizable (resp. controllable)?
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Addressing Problem 13 allows us to investigate how overall network properties derive from those same

properties at the subsystem level. This investigation will be crucial when studying how a malfunctioning

subsystem affects the overall network.

Let us now describe said malfunction. Following a software bug or an adversarial attack, assume that

subsystem (9.2-N) suffers a loss of control authority over a number pN ∈ [[1,mN ]] of its mN actuators. We

then split the nominal input ūN between the remaining controlled inputs uN ∈ F(UN ), UN = [−1, 1]mN−pN

and the uncontrolled and possibly undesirable inputs wN ∈ F(WN ), WN = [−1, 1]pN . We split accordingly

matrix B̄N into BN ∈ RnN×(mN−pN ) and CN ∈ RnN×pN , so that the dynamics of subsystem (9.2-N) become

ẋN (t) = ANxN (t) +BNuN (t) + CNwN (t) +
∑

k∈NN

DN,kxk(t), xN (0) = x0N ∈ RnN . (9.4)

We want to study how the loss of control authority over actuators of subsystem (9.2-N) affects the

stabilizability and the controllability of the whole network. To adapt these properties to malfunctioning

system (9.4), we first need the notion of resilient reachability introduced in [31].

Definition 24: A target xgoal ∈ Rni is resiliently reachable from xi(0) ∈ Rni by malfunctioning system

ẋi(t) = Aixi(t) +Biui(t) + Ciwi(t) if for all wi ∈ F(Wi), there exists T ≥ 0 and ui ∈ F(Ui) such that ui(t)

only depends on wi([0, t]) and the solution exists, is unique and xi(T ) = xgoal.

Definition 25: Tuple (Ai, Bi, Ci,Ui,Wi) is resiliently stabilizable (resp. resilient) if 0 ∈ Rni (resp. every

xgoal ∈ Rni) is resiliently reachable from any xi(0) ∈ Rni by malfunctioning system ẋi(t) = Aixi(t)+Biui(t)+

Ciwi(t).

The network dynamics (9.3) are also impacted by the loss of control authority in subsystem (9.2-N). We

define the network control input u(t) :=
(
ū1(t), . . . , ūN−1(t), uN (t)

)
∈ U := Ū1 × . . .×ŪN−1 ×UN ⊆ RmΣ−pN .

The network dynamics (9.3) then become

Ẋ(t) = (A+D)X(t) +Bu(t) + CwN (t), X(0) = X0 =
(
x01, . . . , x

0
N

)
∈ RnΣ , (9.5)

with the constant matrices B = diag(B̄1, . . . , B̄N−1, BN ) and C =
(

0(nΣ−nN )×pN

CN

)
.

Definition 26: Network (9.5) is resiliently stabilizable (resp. resilient) if tuple
(
A + D,B,C,U ,WN

)
is

resiliently stabilizable (resp. resilient).

We are now led to the following problems of interest.

Problem 14: Assuming that (AN , BN , CN ,UN ,WN ) is resiliently stabilizable (resp. resilient) and (Ai, B̄i, Ūi)
is stabilizable (resp. controllable) for i ∈ [[1, N − 1]], under what conditions is network (9.5) resiliently

stabilizable (resp. resilient)?

Then, we will consider the case where (AN , BN , CN ,UN ,WN ) is not resiliently stabilizable or not resilient

and study whether the other subsystems of the network are stabilizable or controllable despite the perturbations

arising from the coupling between subsystems.

Definition 27: Subsystem i ∈ [[1, N − 1]] of network (9.5) is stabilizable (resp. controllable) if for every

X0 ∈ RnΣ (resp. and every xgoal ∈ Rni) and every wN ∈ F(WN ) there exists T ≥ 0 and u ∈ F(U) such that

the solution to (9.5) exists, is unique and xi(T ) = 0 (resp. xi(T ) = xgoal).
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Note the difference between Definitions 22 and 27. The stabilizability of tuple (Ai, B̄i,Ui) only states that

xi can be driven to 0 with dynamics ẋi(t) = Aixi(t) + B̄iūi(t). Whereas the stabilizability of subsystem i

concerns dynamics (9.2-i) that possess the extra coupling term
∑
k∈Ni

Di,kxk(t). This essential distinction

leads to the following self-evident result.

Lemma 26: If subsystem i ∈ [[1, N − 1]] is stabilizable (resp. resilient), then so is tuple (Ai, B̄i,Ui).
Additionally, if all the Di,k = 0 for k ∈ Ni or equivalently if Ni = ∅, then the stabilizability (resp. resilience)

of tuple (Ai, B̄i,Ui) implies that of subsystem i.

We can then state our third problem of interest.

Problem 15: Assuming that (AN , BN , CN ,UN ,WN ) is not resiliently stabilizable (resp. not resilient) and

(Ai, B̄i, Ūi) is stabilizable (resp. controllable) for i ∈ [[1, N − 1]], under what conditions are all the subsystems

of network (9.5) stabilizable (resp. controllable)?

To solve our problems of interest, we first need several background results from Chapter 7 concerning the

resilience and resilient stabilizability of isolated linear systems.

9.3 Background results

We consider the linear time-invariant system

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, ū(t) ∈ Ū , (9.6)

with A ∈ Rn×n and B̄ ∈ Rn×m constant matrices and Ū = [−1, 1]m. The controllability and stabilizability

of system (9.6) can be assessed with Corollaries 3.6 and 3.7 of Brammer [91], restated here together as

Theorem 27.

Theorem 27 (Brammer’s conditions [91]): If Ū ∩ ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system (9.6) is

stabilizable (resp. controllable) if and only if rank
(
C(A, B̄)

)
= n, Re

(
λ(A)

)
≤ 0 (resp. = 0) and there is no

real eigenvector v of A⊤ satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .

When 0 ∈ int(Ū), Theorem 27 boils down to Sontag’s stabilizability condition [131] as the eigenvector

criteria can be removed.

Theorem 28 (Sontag’s condition [131]): If 0 ∈ int(Ū), then system (9.6) is stabilizable (resp. controllable) if

and only if rank
(
C(A, B̄)

)
= n and Re

(
λ(A)

)
≤ 0 (resp. = 0).

After a loss of control authority over p of them actuators of system (9.6), the input signal ū is split between

the remaining controlled inputs u ∈ F(U), U = [−1, 1]m−p and the uncontrolled and possibly undesirable

inputs w ∈ F(W), W = [−1, 1]p. Matrix B̄ is accordingly split into two constant matrices B ∈ Rn×(m−p)

and C ∈ Rn×p so that the system dynamics become

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn, u(t) ∈ U , w(t) ∈ W. (9.7)

Resilience conditions established in Chapter 7 use Hájek’s approach [23] and hence require the following

system associated to dynamics (9.7)

ẋ(t) = Ax(t) + z(t), x(0) = x0 ∈ Rn, z(t) ∈ Z,
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where Z ⊆ Rn is the Minkowski difference between the set of admissible control inputs BU :=
{
Bu : u ∈ U

}
and the opposite of the set of undesirable inputs CW :=

{
Cw : w ∈ W

}
, i.e.,

Z :=
[
BU ⊖ (−CW)

]
∩BU :=

{
z ∈ BU : z − Cw ∈ BU for all w ∈ W

}
.

Informally, Z represents the control available after counteracting any undesirable input. The first resilience

condition established in Chapter 7 is as follows.

Proposition 27: If int(Z) ̸= ∅, then system (9.7) is resiliently stabilizable (resp. resilient) if and only if

Re
(
λ(A)

)
≤ 0 (resp. = 0).

The main issue with Proposition 27 is the requirement that int(Z) ̸= ∅ in Rn, i.e., Z must be of dimension

n, which implies that matrices B and B̄ must be full rank. To remove this restrictive requirement, Chapter 7

relied on a matrix Z ∈ Rn×r with r := dim(Z) such that Im(Z) = span(Z).

Theorem 29 (Necessary and sufficient condition [37]): System (9.7) is resiliently stabilizable (resp. resilient)

if and only if Re
(
λ(A)

)
≤ 0 (resp. = 0), rank

(
C(A,Z)

)
= n and there is no real eigenvector v of A⊤ satisfying

v⊤z ≤ 0 for all z ∈ Z.

Corollary 9: If dim(Z) = rank(B), then system (9.7) is resiliently stabilizable (resp. resilient) if and only if

system (9.6) is stabilizable (resp. controllable).

Notice how the resilience conditions only differ from the resilient stabilizability ones by further restricting

the eigenvalues of A. Because of the similarity between these two concepts, we will only focus on resilient

stabilizability.

9.4 Network stabilizability

Before studying the impact of a partial loss of control authority, let us investigate the stabilizability of the

initial network (9.3) to address Problem 13.

9.4.1 Stabilizability of the initial network

Since 0 ∈ int(Ū) = [−1, 1]mΣ , a direct application of Theorem 28 yields the following result.

Proposition 28: Network (9.3) is stabilizable if and only if rank
(
C(A+D, B̄)

)
= nΣ and Re(λ(A+D)) ≤ 0.

To address Problem 13, we need to establish conditions that rely on the stabilizability of tuples
(
Ai, B̄i, Ūi

)
unlike Proposition 28. We will then establish several sufficient conditions for stabilizability by studying the

rank and eigenvalue conditions of Proposition 28.

First, note that having rank
(
C(Ai, B̄i)

)
= ni for all i ∈ [[1, N ]] does not necessarily imply rank

(
C(A +

D, B̄)
)
= nΣ, even for matrices D with a small norm compared to that of A. As expected, we need a condition

on matrix D to ensure that the coupling between subsystems does not alter their stabilizability. We could

use the Popov-Belevitch-Hautus (PBH) controllability test [132], i.e., whether rank
[
A+D − sI, B̄

]
= nΣ for

all s ∈ C, which is equivalent to verifying whether B̄x ̸= 0 for all x eigenvectors of A+D. However, relating

the eigenvectors of A+D to those of A is very complicated, as detailed in Corollary 7.2.6. of [100].

Instead, we will prefer the distance to uncontrollability µ(A, B̄) defined in [132] as

µ(A, B̄) := min
{
∥∆A,∆B̄∥ : (A+∆A, B̄ +∆B̄) is uncontrollable

}
= min

{
σn
(
A− sI, B̄

)
: s ∈ C

}
.
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Since B̄ is not affected by the coupling D, we define µB̄(A) := min
{
∥∆A∥ : (A+∆A, B̄) is uncontrollable

}
≥

µ(A, B̄). We also introduce the real stability radius of A,

rR(A) := inf
{
∥D∥ : D ∈ Rn×n and A+D is unstable

}
[133].

To approximate rR(A) numerous lower bounds are provided in [133].

Proposition 29: Sufficient stabilizability conditions for network (9.3) can be derived from Proposition 28

coupled with the following statements.

(a) If rank(B̄i) = ni for all i ∈ [[1, N ]], then rank
(
C(A+D, B̄)

)
= nΣ for all D ∈ Rn×n.

(b) If there exists a matrix F ∈ RmΣ×nΣ such that D = B̄F and pairs (Ai, B̄i) are controllable, then

rank
(
C(A+D, B̄)

)
= nΣ.

(c) If ∥D∥ ≤ µB̄(A), then rank
(
C(A+D, B̄)

)
= nΣ.

(d) If ∥D∥ ≤ rR(A), then Re
(
λ(A+D)

)
≤ 0.

Proof. (a) Assume that rank(B̄i) = ni. Because B̄ = diag(B̄1, . . . , B̄N ), we have rank(B̄) = nΣ, which

yields rank
(
C(A+D, B̄)

)
= rank

(
B̄, (A+D)B̄, . . .

)
= nΣ.

(b) If D can be written as state feedback, D = B̄F , then rank
(
C(A + D, B̄)

)
= rank

(
C(A, B̄)

)
[134].

Because A and B̄ are block diagonal matrices,

rank
(
C(A, B̄)

)
=

N∑
i=1

rank
(
C(Ai, B̄i)

)
=

N∑
i=1

ni = nΣ

because each (Ai, B̄i) is controllable.

(c) By definition of µB̄(A), ∥D∥ ≤ µB̄(A) leads to the controllability of pair (A+D, B̄), i.e., to rank
(
C(A+

D, B̄)
)
= nΣ. Note that µB̄(A) ≥ µ(A, B̄).

(d) By definition of the stability radius ∥D∥ ≤ rR(A) leads to the stability of A+D, i.e., Re(λ(A+D)) ≤ 0.

Combining statements (a), (b) or (c) with statement (d) yield three different sufficient stabilizability

conditions for network (9.3) thanks to Proposition 28.

Note that having µB̄(A) > 0 and rR(A) > 0 implicitly requires the stabilizability of all the tuples(
Ai, B̄i, Ūi

)
. Indeed, µB̄(A) > 0 requires (A, B̄) to be controllable, i.e., each tuple (Ai, B̄i) must be controllable

because of the diagonal structure of A and B̄. Similarly, rR(A) > 0 requires Re
(
λ(A)

)
≤ 0, but λ(A) =

λ(A1) ∪ . . . ∪ λ(AN ) because A = diag(A1, . . . , AN ), hence Re
(
λ(Ai)

)
≤ 0. To sum up, µB̄(A) > 0 and

rR(A) > 0 require rank(Ai, B̄i) = ni and Re
(
λ(Ai)

)
≤ 0, which are exactly the stabilizability conditions of

Sontag for tuple
(
Ai, B̄i, Ūi

)
stated in Theorem 28.

Proposition 29 provides several ways to solve Problem 13. We will now address Problem 14.

9.4.2 Resilient stabilizability of the network

Inspired by the work completed before Proposition 27, we define the input sets of the network (9.5)

BU :=
{
Bu : u ∈ U

}
, CW :=

{
CwN : wN ∈ WN

}
, and Z := BU ⊖ (−CW) ⊆ RnΣ .
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Similarly, we introduce the input sets of each subsystems

B̄iŪi :=
{
B̄iūi : ūi ∈ Ūi

}
for i ∈ [[1, N − 1]],

BNUN :=
{
BNuN : uN ∈ UN

}
, CNWN :=

{
CNwN : wN ∈ WN

}
and ZN := BNUN ⊖ (−CNWN ).

These sets are all linked together with the following result.

Lemma 27: Z = B̄1Ū1 × . . .× B̄N−1ŪN−1 ×ZN .

Proof. Take z = (z1, . . . , zN ) ∈ Z. We want to show that zi ∈ B̄iŪi for i ∈ [[1, N − 1]] and that zN ∈ ZN . Let

wN ∈ WN . Since z ∈ Z, there exists u = (ū1, . . . , ūN−1, uN ) ∈ U = Ū1 × . . .× ŪN−1 × UN such that

z − CwN = Bu =


B̄1ū1
...

B̄N−1ūN−1

BNuN

 =


z1
...

zN−1

zN − CNwN


Then, zi ∈ B̄iŪi for i ∈ [[1, N − 1]]. Additionally, for all wN ∈ WN we have zN − CNwN ∈ BNUN , i.e.,
zN ∈ ZN .

On the other hand, let ūi ∈ Ūi for i ∈ [[1, N − 1]], zN ∈ ZN and define z =
(
B̄1ū1, . . . , B̄N−1ūN−1, zN

)
.

We want to show that z ∈ Z, so we take some wN ∈ WN . Since zN ∈ ZN , there exists uN ∈ UN such that

zN − CNwN = BNuN . Then,

z − CwN =


B̄1ū1
...

B̄N−1ūN−1

zN

−


0
...

0

CN

wN =


B̄1ū1
...

B̄N−1ūN−1

BNuN

 ∈ BU , so z ∈ Z.

Let us now address Problem 14 by considering the case where (AN , BN , CN ,UN ,WN ) is resiliently

stabilizable. Using Proposition 27 we derive a sufficient condition for resilient stabilizability.

Proposition 30: If rank(B̄i) = ni for all i ∈ [[1, N − 1]], int(ZN ) ̸= ∅ and ∥D∥ ≤ rR(A), then network (9.3)

is resiliently stabilizable.

Proof. Since rank(B̄i) = ni, int(B̄iŪi) ̸= ∅, so that according to Lemma 27 we have int(Z) ̸= ∅. By

assumption, we have ∥D∥ ≤ rR(A), i.e., Re(λ(A+D)) ≤ 0. Then, Proposition 27 states that network (9.3) is

resiliently stabilizable.

Proposition 30 provides a straightforward resilient stabilizability condition for the network in a case that

is similar to Proposition 29 (a). As mentioned after Proposition 27, the condition int(ZN ) ̸= ∅ requires

rank(BN ) = rank(B̄N ) = nN . Then, Proposition 30 requires all B̄i to be full rank, which is very restrictive

and not necessary for stabilizability. Instead, we want to use Theorem 29 to derive a less restrictive resilient

stabilizability condition for the network. To use this theorem, we must first build a matrix Z ∈ RnΣ×rΣ

with rΣ = dim(Z) and satisfying Im(Z) = span(Z). In practice, matrix Z is built by collating rΣ linearly

independent vectors from set Z.
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Proposition 31: If ∥D∥ ≤ min
{
rR(A), µZ(A)

}
and there is no real eigenvector v of (A+D)⊤ satisfying

v⊤z ≤ 0 for all z ∈ Z, then network (9.5) is resiliently stabilizable.

Proof. We apply Theorem 29 to network (9.5) and obtain that it is resiliently stabilizable if and only if

Re
(
λ(A + D)

)
≤ 0, rank

(
C(A + D,Z)

)
= nΣ and there is no real eigenvector v of (A + D)⊤ satisfying

v⊤z ≤ 0 for all z ∈ Z. The eigenvalue and rank conditions are satisfied thanks to ∥D∥ ≤ min{rR(A), µZ(A)},
while the eigenvector condition is verified by assumption.

As before, the fact that (Ai, B̄i, Ūi) are stabilizable and that (AN , BN , CN ,UN ,WN ) is resiliently stabiliz-

able, are implied by the conditions of Proposition 31.

When Z is not of full dimension, the eigenvector condition of Proposition 31 is difficult to verify. Indeed,

the space Z⊥ is non-trivial and thus might encompass a real eigenvector of A + D even if none of the

eigenvectors of A are part of Z⊥. Intuitively, when D is small, the eigenvectors of A+D should be ’close’

to those of A. This intuition is formalized in Corollary 7.2.6 of [100], but the complexity of its statement

prevents the derivation of a simple condition to be verified by A and D. Then, Propositions 30 and 31 are

our solutions to Problem 14

9.4.3 Loss of control authority affecting a non-resilient subsystem

We now study the eventuality where (AN , BN , CN ,UN ,WN ) is not resiliently stabilizable. More specifically,

we consider the case where −CNWN ⊈ BNUN , i.e., subsystem (9.4) lost an actuator to which it is not resilient.

Then, there are some undesirable inputs wN that no control input uN can overcome. Such undesirable inputs

wN can prevent stabilizability of subsystem N as demonstrated in Lemma 6 of [37].

To evaluate the resilient stabilizability of the network, we need to study the worst-case scenario where

wN is the most destabilizing undesirable input for subsystem (9.4). We will focus on the case where AN is

Hurwitz, so that the state xN cannot be forced too far from the origin by wN . Then, the terms Di,NxN

impacting subsystems (9.2-i) are bounded and might be counteracted if the controls B̄iūi are strong enough

for all i ∈ [[1, N − 1]]. On the other hand, if AN is not Hurwitz, since −CNWN ⊈ BNUN , the state xN can

be driven to infinity by some wN .

Compared to Theorem 29, we need stronger condition on AN (its Hurwitzness) in order to employ

Lyapunov theory. We will quantify the maximal degree of non-resilience of subsystem (9.4) despite which all

other subsystems (9.2-i) remain stabilizable. Since we will isolate subsystem (9.4) to study its effect on the

other subsystems, we need to split matrix D accordingly:

D =


0 D1,2 . . . D1,N−1 D1,N

. . .
...

DN−1,1 . . . DN−1,N−2 0 DN−1,N

DN,1 . . . . . . DN,N−1 0

 :=

 D̂ D−,N

DN,− 0

 . (9.8)

Then, the last row of D without the last diagonal element is DN,−, while the last columns of D without the

last diagonal element is D−,N . Additionally, let X(t) be the combined state of the first N − 1 subsystems,

X(t) :=
(
x1(t), . . . , xN−1(t)

)
. We will now calculate how far from the origin can wN push the state of

subsystem (9.4) despite the best uN and the Hurwitzness of AN .
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Proposition 32: If AN is Hurwitz and −CNWN ⊈ BNUN , then for all t ≥ 0

∥xN (t)∥PN
≤ eαN t

(
∥xN (0)∥PN

+

∫ t

0

e−αNτβN (τ) dτ

)
, (9.9)

for all PN ≻ 0 and QN ≻ 0 such that A⊤
NPN + PNAN = −QN and with

αN :=
−λQN

min

2λPN
max

, βN (t) := zPN
max + ∥DN,−X(t)∥PN

, zPN
max := max

wN ∈WN

{
min

uN ∈UN

∥CNwN +BNuN∥PN

}
.

Proof. Since AN is Hurwitz, there exists PN ≻ 0 and QN ≻ 0 such that A⊤
NPN + PNAN = −QN according

to Lyapunov theory [121]. Let us consider any such pair (PN , QN ). Then, inspired by Example 15 of [121],

we study the PN -norm of xN , i.e., x⊤NPNxN = ∥xN∥2PN
when state xN is following dynamics (9.4)

d

dt
∥xN (t)∥2PN

= ẋ⊤NPNxN + x⊤NPN ẋN

= x⊤N
(
A⊤
NPN + PNAN

)
xN + 2x⊤NPN (BNuN + CNwN ) + 2x⊤NPN

N−1∑
i=1

DN,ixi.

With the notation of (9.8), we have
∑N−1
i=1 DN,ixi = DN,−X. Since PN ≻ 0, the Cauchy-Schwarz inequality

[100] as stated in Lemma 28 yields

x⊤NPNDN,−X ≤ ∥xN∥PN
∥DN,−X∥PN

and x⊤NPN (BNuN + CNwN ) ≤ ∥xN∥PN
∥BNuN + CNwN∥PN

.

To stabilize xN , we take the control uN minimizing ∥BNuN + CNwN∥PN
when wN is chosen to maximize

this norm, which yields ∥BNuN + CNwN∥PN
≤ zPN

max by definition. Then,

d

dt
∥xN (t)∥2PN

≤ −x⊤NQNxN + 2∥xN∥PN

(
zPN
max + ∥DN,−X∥PN

)
≤ −λQN

min

λPN
max

∥xN∥2PN
+ 2∥xN∥PN

βN .

Indeed, QN ≻ 0 yields −x⊤NQNxN ≤ −λQN

minx
⊤
NxN [122] and ∥xN∥2PN

≤ λPN
maxx

⊤
NxN leads to −x⊤NxN ≤

−1

λ
PN
max

∥xN∥2PN
. Hence, we obtain

d

dt
∥xN (t)∥2PN

≤ 2αN∥xN (t)∥2PN
+ 2βN (t)∥xN (t)∥PN

.

We define yN (t) := ∥xN (t)∥PN
, so that we have d

dty
2
N (t) = 2yN (t)ẏN (t) ≤ 2αNyN (t)2 + 2βN (t)yN (t). For

yN (t) > 0, we then have ẏN (t) ≤ αNyN (t) + βN (t). Define also the function fN
(
t, s(t)

)
:= αNs(t) + βN (t).

The solution of the differential equation ż(t) = fN
(
t, z(t)

)
with initial condition z(0) = ∥xN (0)∥PN

is z(t) = eαN t
(
∥xN (0)∥PN

+
∫ t
0
e−αNτβN (τ) dτ

)
. Since fN (t, z) is Lipschitz in z and continuous in t,

ẏN (t) ≤ fN
(
t, yN (t)

)
and yN (0) = z(0), the Comparison Lemma of [122] states that yN (t) ≤ z(t) for all t ≥ 0,

hence (9.9) holds.

The Hurwitzness of AN allows to bound the steady-state value of the state xN despite undesirable inputs

that cannot be counteracted. We will now study the impact of xN on the rest of the network, whose dynamics

follow

Ẋ(t) = ÂX(t) + B̂û(t) + D̂X(t) +D−,NxN (t), (9.10)
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with Â := diag
(
A1, . . . , AN−1

)
, B̂ := diag

(
B̄1, . . . , B̄N−1

)
, Û := Ū1 × . . . × ŪN−1 = [−1, 1]nΣ−nN , and

û :=
(
ū1, . . . , ūN−1

)
. Recall that X =

(
x1, . . . , xN−1

)
and D̂ was defined in (9.8). Dynamics (9.10) are

perturbed by the term D−,NxN (t) bounded in Proposition 32. Recall that D−,N designates the last column

of matrix D without its last element as defined in (9.8). We can then evaluate how term D−,NxN (t) impacts

X(t) with the following result.

Proposition 33: If Â+ D̂ and AN are Hurwitz, B̂ is full rank, and CNWN ⊈ BNUN , then for any P̂ ≻ 0 and

Q̂ ≻ 0 such that (Â+ D̂)⊤P̂ + P̂ (Â+ D̂) = −Q̂ we define the constants bP̂min := min
û∈ ∂Û

{
∥B̂û∥P̂

}
, α :=

−λQ̂
min

2λP̂
max

,

γ := ∥D−,N∥P̂

√
λP̂
max

λ
PN
min

and γN := ∥DN,−∥P̂

√
λ
PN
max

λP̂
min

. If ααN ̸= γγN , then there exists h± ∈ R and r± ∈ R

such that

∥X(t)∥P̂ ≤ γzPN
max + αNb

P̂
min

ααN − γγN
+ h+e

(r++αN )t + h−e
(r−+αN )t as long as ∥X(t)∥P̂ > 0. (9.11)

If ααN = γγN , there are constants h± ∈ R such that

∥X(t)∥P̂ ≤ γzPN
max + αNb

P̂
min

−α− αN
t+ h+e

(α+αN )t + h− as long as ∥X(t)∥P̂ > 0. (9.12)

Proof. Since Â+D̂ is Hurwitz, there exists P̂ ≻ 0 and Q̂ ≻ 0 such that (Â+D̂)⊤P̂+P̂ (Â+D̂) = −Q̂ according

to Lyapunov theory [121]. Following the same steps as in the proof of Proposition 32 with X⊤P̂X = ∥X∥2
P̂

and X following the dynamics (9.10), we first obtain

d

dt
∥X(t)∥2

P̂
= X⊤((Â+ D̂)⊤P̂ + P̂ (Â+ D̂)

)
X + 2X⊤P̂ B̂û+ 2X⊤P̂D−,NxN .

We apply the control law B̂û(t) = − X(t)
∥X(t)∥P̂

bP̂min when X(t) ̸= 0, which yields

X(t)⊤P̂ B̂û(t) =
−X(t)⊤P̂X(t)

∥X(t)∥P̂
bP̂min = −∥X(t)∥P̂ b

P̂
min.

Note that B̂ being full rank guarantees that the control is always admissible as shown in the proof of

Proposition 3 of [33]. Since ∥ · ∥P̂ is a norm, it verifies the Cauchy-Schwarz inequality [100] X⊤P̂D−,NxN ≤
∥X∥P̂ ∥D−,NxN∥P̂ . Then,

d

dt
∥X(t)∥2

P̂
≤ −X⊤Q̂X − 2∥X∥P̂ b

P̂
min + 2∥X∥P̂ ∥D−,NxN∥P̂ .

Because P̂ ≻ 0 and Q̂ ≻ 0, we obtain −X⊤Q̂X ≤ − λQ̂
min

λP̂
max

∥X∥2
P̂
. The associated P̂ -norm for matrices yields

∥D−,NxN∥P̂ ≤ ∥D−,N∥P̂ ∥xN∥P̂ . Using the positive definiteness of P̂ and PN leads to

∥xN∥P̂ =

√
x⊤N P̂ xN ≤

√
λP̂max x

⊤
NxN ≤

√
λP̂max
λPN
min

x⊤NPNxN = ∥xN∥PN

√
λP̂max
λPN
min

. (9.13)
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Following Proposition 32, we combine (9.9) with the preceding inequalities which yield

d

dt
∥X(t)∥2

P̂
≤ −λQ̂min

λP̂max
∥X(t)∥2

P̂
+ 2∥X(t)∥P̂

(
∥D−,N∥P̂

√
λP̂max
λPN
min

eαN t

(
∥xN (0)∥PN

+

∫ t

0

e−αNτβN (τ)dτ

)
− bP̂min

)
.

Define y(t) := ∥X(t)∥P̂ and yN (t) := ∥xN (t)∥PN
. Using a similar process as in (9.13), we also obtain

∥DN,−X∥PN
≤
√

λ
PN
max

λP̂
min

∥DN,−X∥P̂ , which can be used in βN defined in Proposition 32

βN (τ) = zPN
max + ∥DN,−X(τ)∥PN

≤ zPN
max +

√
λPN
max

λP̂min
∥DN,−X(τ)∥P̂ ≤ zPN

max + γNy(τ). (9.14)

If y(t) ≤ 0, then X(t) = 0, so that (9.11) and (9.12) both hold. Otherwise, for y(t) > 0 we notice that
d
dt∥X(t)∥2

P̂
= 2y(t)ẏ(t), and we can divide both sides of the inequality on d

dt∥X(t)∥2
P̂

by 2y(t) to obtain

ẏ(t) ≤ αy(t) +

(
γeαN t

(
yN (0) +

∫ t

0

e−αNτ
(
zPN
max + γNy(τ)

)
dτ

)
− bP̂min

)
.

We calculate the following integral

eαN t

∫ t

0

e−αNτ dτ = eαN t
e−αN t − 1

−αN
=

1− eαN t

−αN
,

so that the differential inequality becomes

ẏ(t) ≤ αy(t)− bP̂min + γyN (0)eαN t + γzPN
max

1− eαN t

−αN
+ γγNe

αN t

∫ t

0

e−αNτy(τ) dτ,

≤ αy(t)−
(
γ

αN
zPN
max + bP̂min

)
+ γ

(
yN (0) +

zPN
max

αN

)
eαN t + γγNe

αN t

∫ t

0

e−αNτy(τ) dτ.

Now multiply both sides by e−αN t > 0 and define v(t) = e−αN ty(t). Then, v̇(t) = −αNv(t) + e−αN tẏ(t),

which leads to

v̇(t) + αNv(t) ≤ αv(t)−
(
γ

αN
zPN
max + bP̂min

)
e−αN t + γ

(
yN (0) +

zPN
max

αN

)
+ γγN

∫ t

0

v(τ) dτ.

With the function f
(
t, v(t)

)
:= (α−αN )v(t)−

(
γ
αN
zPN
max + bP̂min

)
e−αN t+γ

(
yN (0) + z

PN
max

αN

)
+γγN

∫ t
0
v(τ) dτ ,

we have v̇(t) ≤ f
(
t, v(t)

)
. Now we search for a solution to the differential equation ṡ(t) = f

(
t, s(t)

)
.

Differentiating this equation yields

s̈(t) = (α− αN )ṡ(t) + αN

(
γ

αN
zPN
max + bP̂min

)
e−αN t + γγNs(t), i.e.,

s̈(t) + (αN − α)ṡ(t)− γγNs(t)−
(
γzPN
max + αNb

P̂
min

)
e−αN t = 0. (9.15)

We first study the linear homogeneous differential equation associated with (9.15), i.e.,

s̈(t) + (αN − α)ṡ(t)− γγNs(t) = 0. (9.16)

Solutions of (9.16) can be written as sh(t) = ert with r ∈ C. Plugging sh in (9.16) leads to the quadratic
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equation r2 + (αN − α)r − γγN = 0 after diving by ert. The solutions of this quadratic equation are

r± = 1
2

(
α−αN ±

√
(αN − α)2 + 4γγN

)
. Notice that the discriminant is nonnegative, since γ ≥ 0 and γN ≥ 0,

so both r± ∈ R. We also need a particular solution of the non-homogeneous equation (9.15). We take p ∈ R
such that sp(t) = pe−αN t and plug it in (9.15) to obtain

(
pα2

N − pαN (αN − α)− γγNp− γzPN
max − αNb

P̂
min

)
e−αN t = 0,

i.e., p =
γzPN
max + αNb

P̂
min

α2
N − αN (αN − α)− γγN

=
γzPN
max + αNb

P̂
min

ααN − γγN
.

Let us first treat the case where ααN ̸= γγN , so that p is well-defined. In this case, the general solution

of (9.15) is s(t) = pe−αN t + h+e
r+t + h−e

r−t with h± ∈ R two constants to choose. Since we obtained our

solution by solving s̈(t) = ∂f
∂t

(
t, s(t)

)
instead of ṡ(t) = f

(
t, s(t)

)
, we have an additional initial condition to

satisfy: ṡ(0) = f
(
0, s(0)

)
.

Now we can apply the Comparison Lemma of [122] stating that if ṡ(t) = f
(
t, s(t)

)
, f is continuous in

t and locally Lipschitz in s and s(0) = v(0), then v̇(t) ≤ f
(
t, v(t)

)
implies v(t) ≤ s(t) for all t ≥ 0. Using

∥X(t)∥P̂ = y(t) = eαN tv(t) ≤ eαN ts(t), we finally obtain (9.11). To determine the value of the constants h±,

we use the initial conditions s(0) = v(0) = y(0) and ṡ(0) = f
(
0, s(0)

)
, i.e.,

p+ h+ + h− = ∥X(0)∥P̂ and − αNp+ h+r+ + h−r− = (αN − α)∥X(0)∥P̂ − bP̂min + γ∥xN (0)∥PN
.

We can solve these equations as

h± =
(αN − α− r∓)∥X(0)∥P̂ + γ∥xN (0)∥PN

− bP̂min + (r∓ + αN )p

±
√
(αN − α)2 + 4γγN

.

In the case ααN = γγN , the discriminant of the quadratic equation arising from the homogeneous

differential equation is (αN − α)2 + 4ααN = (α + αN )
2, which yields r+ = α and r− = −αN . Hence

e−αN t is an homogeneous solution and cannot be a particular solution of the non-homogeneous differential

equation (9.15). Instead, we try sp(t) = pte−αN t as a particular solution. We calculate its derivatives

ṡp(t) = p(1− αN t)e
−αN t, s̈p(t) = p(−2αN + α2

N t)e
−αN t and plug it in (9.15). After dividing by e−αN t we

obtain

0 = p(−2αN + α2
N t) + (αN − α)p(1− αN t)− ααNpt− γzPN

max − αNb
P̂
min

= p(−2αN + αN − α) + pt
(
α2
N − αN (αN − α)− ααN

)
− γzPN

max − αNb
P̂
min,

i.e., p =
γz

PN
max+αNb

P̂
min

−α−αN
. In this case p is well-defined since α < 0 and αN < 0. The general solution is

then s(t) = pte−αN t + h+e
αt + h−e

−αN t with h± ∈ R two constants. Applying the Comparison Lemma of

[122] as above, we obtain ∥X(t)∥P̂ = y(t) = eαN tv(t) ≤ eαN ts(t), which yields (9.12). The initial conditions

s(0) = y(0) and ṡ(0) = f
(
0, s(0)

)
lead to

h+ + h− = ∥X(0)∥P̂ and p+ h+α− h−αN = (αN − α)∥X(0)∥P̂ − bP̂min + γ∥xN (0)∥PN
.
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We can solve these equations as

h± =
1
2

(
− αN − α± 3(α− αN )

)
∥X(0)∥P̂ ∓ γ∥xN (0)∥PN

± bP̂min ± p

−αN − α
.

We can now derive conditions for subsystem (9.10) to be stabilizable despite the perturbations created by

xN .

Theorem 30: If Â + D̂ and AN are Hurwitz, B̂ is full rank, and CNWN ⊈ BNUN , γγN ≤ ααN and

γzPN
max < (−αN )bP̂min, then subsystem (9.10) is stabilizable in finite time.

Proof. Let us first consider the case γγN = ααN . By definition α+αN < 0, so the exponential term in (9.12)

goes to zero asymptotically. By assumption γzPN
max + αNb

P̂
min < 0 and −α − αN > 0, so the ratio of these

factors is negative. Because this ratio is multiplied by t in (9.12), there exists some time T ≥ 0 such that for

all t ≥ T

γzPN
max + αNb

P̂
min

−α− αN
t+ h− ≤ 0. (9.17)

Since the terms in (9.17) are linearly decreasing with time, while h+e
(α+αN )t is asymptotically converging

to zero their sum is reaching zero in finite time. Since their sum constitutes, the right-hand side of (9.12),

subsystem (9.10) is stabilizable in finite time. Note that after this upper bound reaches 0 it loses its validity

since we assumed ∥X(t)∥P̂ > 0 in the derivation of this bound, just after (9.14). Therefore, the right-hand

side of (9.12) becoming negative does not create an issue.

Now consider the case γγN < ααN . Note that this inequality is equivalent to r++αN < 0 as shown below

r+ + αN < 0 ⇐⇒ 1

2
(α+ αN ) +

1

2

√
(αN − α)2 + 4γγN < 0 ⇐⇒ (αN − α)2 + 4γγN < (α+ αN )2

⇐⇒ − 2ααN + 4γγN < 2ααN ⇐⇒ γγN < ααN .

Since r− ≤ r+, we also have r− + αN < 0, so both exponential terms in (9.11) converge to zero. Additionally,

the fraction term in (9.11) is negative, so the right-hand side of (9.11) reaches zero in finite time. Therefore,

subsystem (9.10) is stabilizable in finite time. As in the previous case, (9.11) is only valid while ∥X(t)∥P̂ > 0,

hence its upper bound is allowed to become negative.

Let us now give some intuition concerning Theorem 30. Since γ is proportional to the norm of the matrix

D−,N which multiplies xN (t) in (9.10), γ quantifies the impact of the xN (t) on X(t). To put it in words,

γ quantifies the impact of nonresilient subsystem (9.4) on the rest of the network (9.10). Reciprocally, γN

quantifies the impact of X(t) on xN (t). On the other hand, α =
−λQ̂

min

2λP̂
max

relates to the Hurwitzness of the first

N − 1 subsystems of network (9.10), while αN relates to the Hurwitzness of malfunctioning subsystem (9.4).

Therefore, condition γγN ≤ ααN follows the intuition that the magnitude of the perturbations arising

from the coupling between subsystems (9.10) and (9.4) must be weaker than the Hurwitzness and hence

stabilizability of each of these subsystems.

Let us now give some intuition concerning condition γzPN
max < (−αN )bP̂min of Theorem 30. Since zPN

max

describes the magnitude of the destabilizing inputs in subsystem (9.4), term γzPN
max quantifies the destabilizing

influence of wN on the state of the rest of the network X. On the other hand, bP̂min relates to the magnitude of

the stabilizing inputs in subsystem (9.10) and αN relates to the Hurwitzness of malfunctioning subsystem (9.4).
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Therefore, condition γzPN
max < (−αN )bP̂min carries the intuition that the stabilizing terms of the network must

overcome the destabilizing ones.

Since we have bounded the state X of the first N − 1 subsystems, we can use this knowledge to bound

the state of the malfunctioning subsystem N . Indeed, the bound derived in Proposition 32 depends on X(t)

through the term βN (t).

Proposition 34: If Â+ D̂ and AN are Hurwitz, B̂ is full rank, and CNWN ⊈ BNUN , we can bound the

state of subsystem (9.4). If ααN ̸= γγN , then as long as ∥xN (t)∥PN
> 0,

∥xN (t)∥PN
≤ αzPN

max + γNb
P̂
min

γγN − ααN

(
1− eαN t

)
+ eαN t

(
∥xN (0)∥PN

+
γNh+
r+

(
er+t − 1

)
+
γNh−
r−

(
er−t − 1

))
.

(9.18)

If ααN = γγN , then as long as ∥xN (t)∥PN
> 0, we have

∥xN (t)∥PN
≤ eαN t∥xN (0)∥PN

+ 1−eαNt

−αN

(
γNh− +

γNb
P̂
min−αNz

PN
max

−α−αN

)
+
αz

PN
max+γNb

P̂
min

α+αN
t+ γNh+

α

(
eαt − 1

)
eαN t.

(9.19)

Proof. We recall from Proposition 32 that ∥xN (t)∥PN
≤ eαN t

(
∥xN (0)∥PN

+
∫ t
0
e−αNτβN (τ) dτ

)
(9.9). Fol-

lowing (9.14), we have βN (t) ≤ zPN
max + γN∥X(t)∥P̂ . We can bound ∥X(t)∥P̂ with (9.11) or (9.12) from

Proposition 33 depending on the values of ααN and γγN .

We start with the generic case where ααN ̸= γγN . Then, bound (9.11) yields∫ t

0

e−αNτβN (τ) dτ ≤
∫ t

0

e−αNτ
(
zPN
max + γNp+ γNh+e

(r++αN )τ + γNh−e
(r−+αN )τ

)
dτ

=

∫ t

0

e−αNτ
(
zPN
max + γNp

)
dτ + γN

∫ t

0

h+e
r+τ + h−e

r−τdτ

=
e−αN t − 1

−αN
(
zPN
max + γNp

)
+
γNh+
r+

(
er+t − 1

)
+
γNh−
r−

(
er−t − 1

)
.

We replace p in

zPN
max + γNp

−αN
=
αzPN

max + γNb
P̂
min

γγN − ααN
with p =

γzPN
max + αNb

P̂
min

ααN − γγN
.

Then, plugging the integral calculated above in (9.9), we obtain

∥xN (t)∥PN
≤ eαN t

(
∥xN (0)∥PN

+
αzPN

max + γNb
P̂
min

γγN − ααN

(
e−αN t − 1

)
+
γNh+
r+

(
er+t − 1

)
+
γNh−
r−

(
er−t − 1

))
,

which yields (9.18).
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We can now address the other case where ααN = γγN and ∥X(t)∥P̂ is bounded by (9.12), which yields∫ t

0

e−αNτβN (τ) dτ ≤
∫ t

0

e−αNτ
(
zPN
max + γNpτ + γNh+e

(α+αN )τ + γNh−
)
dτ

=
(
zPN
max + γNh−

) ∫ t

0

e−αNτ dτ + γNp

∫ t

0

τe−αNτ dτ + γNh+

∫ t

0

eατ dτ

=
(
zPN
max + γNh−

)e−αN t − 1

−αN
+
γNp

α2
N

(
1− e−αN t − αN te

−αN t
)
+
γNh+
α

(
eαt − 1

)
=
e−αN t − 1

−αN

(
zPN
max + γNh− +

γNp

αN

)
− γNp

αN
te−αN t +

γNh+
α

(
eαt − 1

)
.

Then, we replace p with its definition:

γNp

−αN
=
γγNz

PN
max + γNαNb

P̂
min

αN (α+ αN )
=
αzPN

max + γNb
P̂
min

α+ αN
thanks to p =

γzPN
max + αNb

P̂
min

−α− αN
.

Multiplying the integral calculated previously by eαN t yields

∫ t

0

eαN (t−τ)βN (τ)dτ ≤ 1− eαN t

−αN

(
γNh− +

γNb
P̂
min − αNz

PN
max

−α− αN

)
+
αzPN

max + γNb
P̂
min

α+ αN
t+

γNh+
α

(
eαt − 1

)
eαN t.

We finally obtain (9.19) thanks to (9.9).

Propositions 33 and 34 describe the state of the network after a partial loss of control authority to which

the network dynamics were not resilient. These two results relied on the full rank assumption of B̂, the

control matrix of the unaffected part of the network. Because this assumption might be too restrictive, we

will now employ a different approach to bound the states of the network.

9.4.4 Underactuated network

Let us now assume that B̂ is not full rank, preventing the use of Proposition 33. Instead of the stabilizing

control input of constant magnitude B̂û(t) = − X(t)
∥X(t)∥P̂

bP̂min used in Proposition 33, we will employ a linear

control û(t) = −KX(t) to stabilize X.

Let K be a matrix such that Â + D̂ − B̂K is Hurwitz. Then, for any P̂ ≻ 0 and Q̂ ≻ 0 such that

(Â+ D̂ − B̂K)⊤P̂ + P̂ (Â+ D̂ − B̂K) = −Q̂, we can define the same constants as in Proposition 33, namely

α =
−λQ̂

min

2λP̂
max

, γ = ∥D−,N∥P̂

√
λP̂
max

λ
PN
min

and γN = ∥DN,−∥P̂

√
λ
PN
max

λP̂
min

.

Proposition 35: If pair
(
Â + D̂, B̂

)
is controllable, AN is Hurwitz, CNWN ⊈ BNUN , γγN < ααN and

m ≤
√
λP̂
min

∥K∥ , then ∥X(t)∥P̂ ≤ m for all t ≥ 0, with m := max
{
p+ h+ + h−, p+ h+, p+ h−, p

}
,

h± =
(αN − α− r∓)∥X(0)∥P̂ + γ∥xN (0)∥PN

+ (r∓ + αN )p

±
√
(αN − α)2 + 4γγN

and p =
γzPN
max

ααN − γγN
.

Proof. Since pair
(
Â+ D̂, B̂

)
is controllable, there exists a matrix K such that Â+ D̂− B̂K is Hurwitz [122].

Then, there exists P̂ ≻ 0 and Q̂ ≻ 0 such that (Â + D̂ − B̂K)⊤P̂ + P̂ (Â + D̂ − B̂K) = −Q̂ according to

Lyapunov theory [121]. We will follow the same steps as in the proof of Proposition 33 with X⊤P̂X = ∥X∥2
P̂

and X following the dynamics (9.10) with û(t) = −KX(t). Once we obtain bounds on X(t) we will verify
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under which conditions is û admissible. We first obtain

d

dt
∥X(t)∥2

P̂
= X(t)⊤

(
(Â+ D̂ − B̂K)⊤P̂ + P̂ (Â+ D̂ − B̂K)

)
X(t) + 2X(t)⊤P̂D−,NxN (t).

We then proceed as in Proposition 33, but without the term bP̂min. If ααN ̸= γγN , then r± = 1
2

(
α− αN ±√

(αN − α)2 + 4γγN
)
, p = γz

PN
max

ααN−γγN > 0 and there are constants h± ∈ R such that

∥X(t)∥P̂ ≤ p+ h+e
(r++αN )t + h−e

(r−+αN )t for all t ≥ 0, (9.20)

p+ h+ + h− = ∥X(0)∥P̂ and − αNp+ h+r+ + h−r− = (αN − α)∥X(0)∥P̂ + γ∥xN (0)∥PN
.

Similarly, in the case ααN = γγN , there are constants h± ∈ R such that

∥X(t)∥P̂ ≤ γzPN
max

−α− αN
t+ h+e

(α+αN )t + h− for all t ≥ 0. (9.21)

Bounds (9.20) and (9.21) are only valid when û(t) = −KX(t) ∈ U = [−1, 1]m. For this control law to be

admissible, we then need

∥X(t)∥P̂ ≤

√
λP̂min

∥K∥
at all times t ≥ 0, since ∥û(t)∥ ≤ ∥K∥∥X(t)∥ ≤ ∥K∥

∥X(t)∥P̂√
λP̂min

.

If ααN = γγN , the term linear in t of (9.21) grows unbounded since γzPN
max > 0 and −α − αN > 0. In

this case, we cannot guarantee to keep X(t) bounded with linear control û(t) = −KX(t).

If γγN < ααN , then according to the equivalence derived in the proof of Theorem 30, both r± + αN < 0.

Then, both exponential terms of (9.20) converge to 0, leaving only the constant term p > 0. In this case,

∥X(t)∥P̂ ≤ max
{
p+ h+ + h−, p+ h+, p+ h−, p

}
= m.

Thus, m ≤
√
λP̂
min

∥K∥ guarantees the admissibility of û.

Note that the perturbation from subsystem N in norm bounds (9.20) and (9.21) is modeled by term

zPN
max > 0 of constant magnitude. Hence, this perturbation cannot be overcome when X is near 0 by the linear

control û(t) = −KX(t) used in Proposition 35. That is why Proposition 35 only guarantees the boundedness

of X and not its stabilizability.

Maximum m depends on the sign of h±, which depend on the initial conditions ∥X(0)∥P̂ and ∥xN (0)∥PN
.

Remark: If the network is initially at rest when the loss of control authority occurs, i.e., if X(0) = 0 and

xN (0) = 0, then h+ < 0 and h− > 0, so that m = p+ h− = −h+ = −(r−+αN )γz
PN
max

(ααN−γγN )
√

(αN−α)2+4γγN
.

9.5 Supporting lemmata

Since (x, y) 7→ x⊤Py defines a scalar product for any P ≻ 0, it verifies the Cauchy-Schwarz inequality [100].

We provide here a more constructive proof of this result for the reader.

Lemma 28 (Cauchy-Schwarz inequality for the P -norm): Let P ∈ Rn×n, P ≻ 0 and x ∈ Rn, y ∈ Rn. Then,
x⊤Py ≤ ∥x∥P ∥y∥P .
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Proof. Since P ≻ 0, there exists a matrix M ∈ Rn×n such that P =M⊤M [100]. Then,

x⊤Py = x⊤M⊤My = (Mx)⊤My ≤ ∥Mx∥ ∥My∥,

by the Cauchy-Schwarz inequality applied to the Euclidean norm on Rn [100]. Note that

∥Mx∥ =
√
(Mx)⊤Mx =

√
x⊤M⊤Mx =

√
x⊤Px = ∥x∥P .

Similarly, ∥My∥ = ∥y∥P . Thus, x⊤Py ≤ ∥x∥P ∥y∥P .

We now show how the non-resilience of subsytem (9.4) translates to the value of zPN
max.

Lemma 29: With PN ≻ 0 and zPN
max = max

wN ∈WN

{
min

uN ∈UN

∥CNwN + BNuN∥PN

}
, we have −CNWN ⊈

BNUN ⇐⇒ zPN
max > 0.

Proof. If −CNWN ⊆ BNUN , then for all wN ∈ WN , there exists uN ∈ UN such that CNwN + BNuN = 0.

Hence, min
uN ∈UN

{
∥CNwN +BNuN∥PN

}
= 0 for all wN ∈ WN , i.e., zPN

max = 0.

On the other hand, if −CNWN ⊈ BNUN , there exists wN ∈ WN such that CNwN + BNuN ̸= 0 for

all uN ∈ UN . The function uN 7→ ∥CNwN + BNuN∥PN
is continuous, nonnegative and UN is compact,

hence it reaches a minimum which cannot be null on UN , i.e., min
uN ∈UN

{
∥CNwN + BNuN∥PN

}
> 0. Then,

zPN
max > 0.

9.6 Summary

In this chapter we studied the resilience of linear networks and established network specific stabilizability

conditions. Building on these results, we investigated how a partial loss of control authority over actuators

of a subsystem would affect the stabilizability of the whole network, depending on the resilience of the

malfunctioning subsystem. We were able to quantify how unresilient can a subsystem be so as not to

destabilize its network.
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Chapter 10

Resilience of an Orbital Inspection

Mission

10.1 Introduction

With an increase in the number of active satellites, there is a growing demand for on-orbit satellite inspection,

e.g., to assess damage on satellites, prevent unnecessary spacewalks of astronauts, or enforce the ban of space

weapons [135]–[137]. The importance of satellite inspection is also reflected by the creation of spacecraft

entirely dedicated to on-orbit inspections, like the robot Laura from the Rogue Space Systems Corporation1.

Partly inspired by the on-orbit servicing Restore-L mission [12], our scenario of interest consists of an

orbital inspection of a satellite by a spacecraft that completes a full revolution around the target satellite.

Following an on-board computer error, the inspecting spacecraft endures a loss of control authority over one

of its thrusters, similarly to what happened to the Nauka module when docked to the International Space

Station [13]. This malfunction consists in one of the thrusters producing uncontrolled and thus possibly

undesirable thrust with the same capabilities as before the malfunction.

Because of the reaction times of the sensors and thrusters [26], [27], the controller is likely not able

counteract the undesirable thrust in real-time. Our objective is then to develop a control strategy for safely

carrying out the inspection mission despite the malfunctioning thruster and the actuation delay. More

specifically, we want the damaged spacecraft to accurately follow a safe reference trajectory. In our simulation,

we choose a minimal-fuel reference trajectory generated by the convex optimization method of [138].

Relying on our works [34], [39], this chapter studies the resilience of the orbital inspection mission

aforementioned and has three main contributions. Firstly, we establish the resilience of a spacecraft with

nonlinear dynamics. Secondly, we build a resilient trajectory tracking controller with guaranteed performance

for the nonlinear spacecraft dynamics. Finally, we demonstrate that on-orbit inspection can be performed

safely despite actuation delay and a loss of control authority over a thruster.

The remainder of this chapter is structured as follows. Section 10.2 introduces our problem of interest

and the relative dynamics of the satellites. In Section 10.3, we ignore actuation delay to apply existing

resilience theory to the malfunctioning spacecraft to demonstrate its remaining capabilities in terms of resilient

reachability and trajectory tracking. Section 10.4 builds on the theory of Section 8.3 to produce a resilient

1https://rogue.space/orbots/
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trajectory tracking controller with guaranteed performance despite actuation delay. Finally, Section 10.5

implements this controller in a numerical simulation of the inspection mission.

10.2 Motivation and background

We consider two spacecraft on circular orbit around Earth. The mission of the chaser spacecraft is to inspect

the target spacecraft. As we are interested in proximity operations, we employ the Clohessy-Wiltshire

equations in a local-vertical, local-horizontal frame [138]. The state vector X =
(
x y z ẋ ẏ ż

)
∈ R6 represents

the difference in position and velocity between the two spacecraft and initially follows the dynamics

Ẋ(t) = AX(t) + rB̄ū(t), X(0) = X0 ∈ R6,

with a thrust-to-mass ratio r = 1.5× 10−4m/s2, as we consider a chaser spacecraft of mass 600 kg and five

PPS-1350 thrusters of maximal thrust 90mN [139] controlled by the inputs ū =
(
ū1 ū2 ū3 ū4 ū5

)
∈ [0, 1]5.

Because the z-dynamics of the Clohessy-Witshire equations are decoupled from the other two axis, we focus

on the two-dimensional dynamics in the (x, y)-plane, with matrices:

A =


0 0 1 0

0 0 0 1

3Ω2 0 0 2Ω

0 0 −2Ω 0

 and B̄ =


0 0 0 0 0

0 0 0 0 0

1 1 −1 −
√
2 −1

1 −1 −1 0 1

 ,

where Ω = 0.00106 s−1 is the mean orbital rate of the target’s orbit. The thrusters do not create any torque

[51] since they are rigidly fixed on the spacecraft and are aligned with its center of mass, as illustrated on

Fig. 10.1. To perform its inspection mission, the chaser spacecraft relies on a fixed camera constantly pointing

at the target thanks to the reaction wheels controlling the attitude of the chaser, as shown on Fig. 10.1.

Because of these attitude changes, the relative dynamics lose their linearity to become

Ẋ(t) = AX(t) + rRθ(t)B̄ū(t), with Rθ(t) =


1 0 0 0

0 1 0 0

0 0 cos
(
θ(t)

)
− sin

(
θ(t)

)
0 0 sin

(
θ(t)

)
cos
(
θ(t)

)

 , (10.1)

where θ is illustrated on Fig. 10.1 and is defined as the 2-argument arctangent θ(t) := atan2
(
y(t), x(t)

)
.

Following the Restore-L protocol [12], we assume that the chaser must come within 80m of the target

for a precise optical inspection. Hence, we want the chaser to occupy successively the 5 following holding

points (0, 80), (−80, 0), (0,−80), (80, 0) and (0, 80). Using the convex optimization method [138] we compute

on Fig. 10.2 the minimal fuel trajectory linking these waypoints with 90 minutes transfers. For safety

considerations, we consider a keep-out sphere (KOS) of radius RKOS = 50m around the target as in the

Restore-L mission [12].

Because the chaser is constantly pointing its camera towards the target, its orientation angle θ (see

Fig. 10.1) varies throughout the trajectory as shown on Fig. 10.3(a) and starts at θ(0) = 90◦ since the initial

position of the spacecraft is on the y-axis, as illustrated in Fig. 10.2.

When the chaser follows the minimal-fuel reference trajectory of Fig. 10.2, the resulting thrust profile is
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ū1
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chaser
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Figure 10.1: Relative positions and attitudes of the two satellites, with the camera of the chaser always
pointing at the target thanks to an independent attitude control system.

Figure 10.2: Reference minimal-fuel trajectory (blue) linking the four waypoints (green) to inspect the target
satellite (red) without breaching the KOS (yellow).

(a) Orientation of the chaser θ during its mission, with
the waypoints in green. (b) Combined magnitude of the reference thrust signal ∥uref∥.

Figure 10.3: Chaser orientation and thrust profile for the reference trajectory.
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represented on Fig. 10.3(b) and shows several impulses. Their symmetry comes from the symmetry of the

reference trajectory of Fig. 10.2. This thrust profile is obtained from the convex optimization method [138]

by propagating dynamics (10.1) along the fuel-optimal trajectory.

Having described the nominal dynamics and the reference trajectory, we now study the malfunction

impacting the chaser. Similarly to what happened to the Nauka module docked to the ISS [13], we assume

that an error in the on-board computer of the chaser satellite causes the controller to lose authority over one

of the thrusters. The input signal ū ∈ F(Ū) of (10.1) is then split between the undesirable signal w ∈ F(W),

W = [0, 1] and the controlled signal u ∈ F(U), U = [0, 1]4. Matrix B̄ is accordingly split into two constant

matrices B ∈ R4×4 and C ∈ R4 so that the dynamics of the malfunctioning satellite become

Ẋ(t) = AX(t) + rRθ(t)Bu(t) + rRθ(t)Cw(t), X(0) = X0 ∈ R4. (10.2)

In order to account for the unavoidable sensors and thrusters delays on spacecraft [26], we should assume

that the controller operates with a constant input delay τ > 0 so that the dynamics of the spacecraft are in

fact

Ẋ(t) = AX(t) + rRθ(t)Bu
(
t,X(t− τ), w(t− τ)

)
+ rRθ(t)Cw(t), X(0) = X0 ∈ R4. (10.3)

The controller cannot react immediately to a change of the undesirable input w(t) and cancel it instantaneously.

Only starting at t + τ can the controller try to counteract w(t). We can then formulate our problem of

interest.

Problem 16: With what accuracy can the chaser satellite track the reference trajectory even after enduring

a loss of control authority over any one of its thrusters?

To address Problem 16, we start by determining over which thrusters the spacecraft can resiliently lose

control. This investigation is carried out in Section 10.3 on dynamics (10.2) based on the ’snap decision rule’

of [23] where the controller u(t) has instantaneous knowledge of the state X(t) and of the uncontrolled input

w(t). This assumption is lifted in subsequent sections where we study how can system (10.3) perform resilient

trajectory tracking despite actuation delay.

10.3 Spacecraft resilience with instantaneous control

We rely on the resilience theory established in Chapter 7 to determine over which thrusters the chaser

spacecraft can lose control, while still remaining capable of accomplishing its mission.

10.3.1 Resilient reachability

Let us first recall the notion of resilience adapted to system (10.1).

Definition 28: System (10.1) is resilient to the loss of control authority over one of its thrusters if for any

target Xgoal ∈ R4 and any undesirable signal w ∈ F(W) there exists a control signal u ∈ F(U) such that the

resulting malfunctioning system (10.2) can reach Xgoal in finite time.

Resilience is not sufficient to complete the mission of Problem 16 since Definition 28 only concerns target

reachability and not trajectory tracking. However, resilience is necessary for mission completion. Indeed,

if the spacecraft is not resilient to the loss of one of its thrusters, then it cannot track a trajectory despite

any undesirable thrust. We will then study the resilience of the nonlinear dynamics (10.1) thanks to the
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work accomplished in Section 8.4. System (10.2) fits within the scope of Theorem 26, hence resilience of

system (10.1) is implied by controllability of system

Ẋ(t) = AX(t) + rRθ(t)p(t), X(0) = X0, p(t) ∈ P = BU ⊖ (−CW). (10.4)

Note that P represents the amount of control authority remaining after counteracting the worst undesirable

input. The controllability and stabilizability definitions from [91] can be adapted to system (10.4) as follows.

Definition 29: System (10.4) is controllable (resp. stabilizable) if for all X0 ∈ R4 and all Xgoal ∈ R4,

there exists a time T and a control signal p ∈ F(P) driving the state of system (10.4) from X(0) = X0 to

X(T ) = Xgoal (resp. to X(T ) = 0).

We start by investigating whether system (10.1) is resilient to a loss of control authority over thruster no.

4. Indeed, this thruster plays a special role in the actuation of the chaser spacecraft due to its location shown

on Fig. 10.1 and yields

B =


0 0 0 0

0 0 0 0

1 1 −1 −1

1 −1 −1 1

 and C =


0

0

−
√
2

0

 . (10.5)

The polytopes BU and −CW are both in R4, but since they are of dimension 2, we only represent these last

two dimensions in Fig. 10.4. Similarly, the Minkowski difference P is of dimension 2 and is also illustrated in

Fig. 10.4.

−CW

BU
P

Pb

Figure 10.4: Illustration of dimensions 3 and 4 of BU (blue), −CW (red), their Minkowski difference P
(green) and the largest ball Pb (brown) centered at 0 fitting inside P for the loss of control authority over
thruster no. 4.

To prove the resilience of system (10.1) to a loss of control authority over thruster no. 4, we need to verify

the controllability of nonlinear system (10.4). However, this is generally a difficult problem [111]. We will

then construct a related linear time-invariant system, whose controllability implies that of system (10.4).

Proposition 36: System (10.1) is resilient to a loss of control authority over thruster no. 4.

Proof. Following Theorem 26, we will prove controllability of system (10.4) to obtain resilience of system (10.1).

Because −CW ⊆ int
(
BU
)
, we have 0 ∈ int

(
P
)
, as seen on Fig. 10.4. Then, we can define ρmax as the radius

of the largest ball of dimension 2 centered at 0 and fitting inside P , i.e., ρmax := max
{
ρ ≥ 0 : B2(0, ρ) ⊆ P

}
.

In our case ρmax =
√
2 − 1 = 0.414. Then, the ball Pb := B2(0, ρmax) is a subset of P as illustrated on

Fig. 10.4. Because Pb is a ball, there is a one-to-one correspondence between inputs p ∈ Pb and Rθp ∈ Pb, so
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the dynamics (10.4) with inputs constrained to Pb are in fact

Ẋ(t) = AX(t) + rB̂p(t), p ∈ Pb ⊂ R2, B̂ =
[
02×2

I2

]
. (10.6)

Because the first two rows of B and C defined in Eq. (10.5) are null, the geometrical work we completed

above only concerns the last two coordinates of the inputs, which explains the structure of matrix B̂ in (10.6).

To prove the controllability of system (10.6), we verify the conditions of Corollary 3.7 of [91]:

• 0 ∈ Pb, so taking p = 0 makes B̂p = 0;

• the convex hull of Pb has a non-empty interior in R2;

•
[
B̂, AB̂

]
=
[
02×2 I2
I2 ∗

]
, so rank

([
B̂, AB̂

])
= 4, i.e., the controllability matrix has full rank;

• the real eigenvectors of A⊤ are all scalar multiples of v = (2Ω, 0, 0, 1), which makes v⊤B̂p = p2 for all

p = (p1, p2) ∈ Pb and p2 can be chosen positive or negative since ρmax > 0;

• the eigenvalues of A are
{
0, 0,±jΩ

}
, so they all have a zero real part.

Hence, system (10.6) is controllable. Because system (10.4) follows the same dynamics as (10.6), and has a

larger input set encompassing that of system (10.6), it is also controllable. Then, according to Theorem 26

system (10.1) is resilient to the loss of control over thruster no. 4.

We can now proceed to the case of the other four thrusters. Because of their symmetric placement as

shown on Fig. 10.1, we only need to study one thruster and similar conclusions will hold for the others. For

the loss of control authority over thruster no. 1, we represent dimensions 3 and 4 of polytopes BU , −CW,

and P on Fig. 10.5.

−CW

BU P

Figure 10.5: Illustration of dimensions 3 and 4 of BU (blue), −CW (red) and their Minkowski difference P
(green) for the loss of control authority over thruster no. 1.

Note that (0, 0) is on the boundary of P , so that ρmax = 0, no ball of positive radius centered at 0 can fit

inside P . This issue is much more problematic than just preventing us from reusing the proof of Proposition 36.

Indeed, let Tref :=
{
Xref(t) : Ẋref(T ) = AXref + rRθ(t)pref(t), t ≥ 0

}
be the reference trajectory of Fig. 10.2,

where control law pref ∈ F(Pref) is obtained with the trajectory propagation algorithm of [138]. To produce

this trajectory, we need 0 ∈ int(Pref) as shown on Fig. 10.6. Since 0 /∈ int(P), we have Pref ⊈ P. Therefore,

the spacecraft cannot track Tref after the loss of control authority over a thruster other than no. 4. Note that

adding a sixth thruster instead of the camera (see Fig. 10.1) would guarantee 0 ∈ int(P) after the loss of

control over any single thruster.

To simplify further discussions, let us assume that Pref is the smallest ball centered at 0 encompassing

all pref(t), i.e., Pref = B2(0, ρref) with ρref := min
{
ρ > 0 : pref(t) ∈ B(0, ρ) for all t ≥ 0

}
. For the reference

trajectory of Fig. 10.2, radius ρref = 4.85× 10−4 and is illustrated on Fig. 10.6.
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Figure 10.6: Dimensions 3 and 4 of the reference thrust inputs pref (blue) included in the ball Pref (red) of
radius ρref (black) for the reference trajectory Tref.

10.3.2 Resilient trajectory tracking and robustness to initial state difference

Following the discussion above, we will only investigate resilient trajectory tracking for the loss of control

authority over thruster no. 4. In this scenario, ρmax = 0.414 >> ρref = 4.85×10−4. Then, the malfunctioning

spacecraft has a large amount of control authority left even after counteracting the worst undesirable thrust

and producing the reference thrust input. Let us detail why this remaining thrust capability will be sorely

needed.

The initial state of the malfunctioning spacecraft X0 is most likely not exactly equal to Xref(0), the initial

of reference trajectory Tref, which was designed before the spaceflight. We then need to design a tracking

controller with robustness to uncertainty on the initial state. Moreover, if the difference X0 − Xref(0) is

not actively reduced, it can grow exponentially with time [122]. Thus, we need the extra thrust capability

mentioned earlier to counteract X(t)−Xref(t). Formally, we pick ε > 0 and define input set Pε := B2(0, ε)

to overcome X(t)−Xref(t). For the robust tracking of Tref to be admissible, we then need Pε ⊕ Pref ⊆ P,

where we recall P as the set of control inputs remaining after counteracting the worst undesirable thrust

from malfunctioning thruster no. 4. We now introduce the dynamics tasked with counteracting the initial

state error

Ẏ (t) = AY (t) + rRθ(t)pε(t), Y (0) = X0 −Xref(0), pε(t) ∈ Pε, (10.7)

where Rθ(t) is the rotation matrix tracking position X(t) of system (10.2).

Proposition 37: If ε+ ρref ≤ ρmax, then system (10.7) is stabilizable in a finite time tf and the reference

trajectory Tref can be tracked exactly by system (10.2) after time tf , i.e., X(T ) = Xref(T ) for all t ≥ tf .

Proof. We start with the same trick as in the proof of Proposition 36 by noticing that Pε = B2(0, ε) is

left unchanged by the rotation matrix Rθ. Then, system (10.7) has a one-to-one correspondence with the

following linear system

Ẏ (t) = AY (t) + rB̂pε(t), Y (0) = X0 −Xref(0), pε(t) ∈ Pε, B̂ =
[
02×2

I2

]
. (10.8)

Since 0 ∈ int(Pε), Re(λ(A)) ≤ 0, and rank
([
B̂ AB̂

])
= 4, Corollary 3.6 of [91] states that system (10.8) is

stabilizable in a finite time tf and so is system (10.7) by construction.

Therefore, there exists a signal pε ∈ F(Pε) on [0, tf ] yielding Y (tf ) = 0 in system (10.7). Since 0 ∈ Pε, we
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extend the control signal to pε(t) = 0 for all t > tf . We now define the control law ptrack(t) := pε(t) + pref(t).

Note that Pε ⊕Pref = B(0, ε)⊕B(0, ρref) = B(0, ε+ ρref) ⊆ B(0, ρmax) since ε+ ρref ≤ ρmax. By definition of

ρmax, B(0, ρmax) ⊆ P. Thus, Pε ⊕ Pref ⊆ P, i.e., ptrack(t) ∈ P for all t ≥ 0.

Let w ∈ F(W) be any undesirable input signal. Then, by definition of P , there exists u ∈ F(U) such that

Bu(t) = ptrack(t)− Cw(t) for all t ≥ 0. We now implement this controller for T ≥ tf in system (10.2):

X(T ) = eAT

(
X0 +

∫ T

0

e−AtrRθ(t)
(
Bu(t) + Cw(t)

)
dt

)
= eAT

(
X0 +

∫ T

0

e−AtrRθ(t)
(
pε(t) + pref(t)

)
dt

)

= eAT

(
X0 +

∫ T

0

e−AtrRθ(t)pε(t) dt+ e−ATXref(T )−Xref(0)

)
,

because Xref(T ) = eAT
(
Xref(0) +

∫ T
0
e−AtrRθ(t)pref(t)dt

)
. Then,

X(T )−Xref(T ) = eAT

(
X0 −Xref(0) +

∫ T

0

e−AtrRθ(t)pε(t) dt

)
= eAT

(
X0 −Xref(0) +

∫ tf

0

e−AtrRθ(t)pε(t) dt

)
,

since pε(t) = 0 for t > tf . By definition of pε,

Y (tf ) = 0 = eAtf
(
Y (0) +

∫ tf

0

e−AtrRθ(t)pε(t) dt

)
, i.e., X0 −Xref(0) +

∫ tf

0

e−AtrRθ(t)pε(t) dt = 0.

Therefore, X(T ) = Xref(T ) for all T ≥ tf .

Proposition 37 states that as long as ε+ρref ≤ ρmax, there exists a finite time tf after which any trajectory

Tref can be tracked perfectly despite the loss of control authority over a thruster. Since ε describes the

maximal input magnitude of system (10.7), ε is inversely correlated with its stabilization time tf . Then, the

constraint ε+ ρref ≤ ρmax yields that the smaller ρref, the larger ε and so the smaller tf is. In other words,

the smaller the inputs required to track the reference trajectory, the faster the spacecraft can resume perfect

tracking after a loss of control authority. Let us now investigate how the spacecraft would perform if the

controller could not react instantly to undesirable thrust inputs.

10.4 Spacecraft resilience in the presence of actuation delay

In this section we extend the resilience theory of linear systems with actuation delays of Section 8.3 to the

rotating dynamics (10.3) to build an answer to Problem 16. We start by verifying whether the open-loop

controller of Section 8.3.3 can be applied to the spacecraft.

10.4.1 Open-loop controller

To apply the open-loop controller of Section 8.3.3, we need to extend the minimal correction time Tc of

Definition 21 to the nonlinear spacecraft dynamics (10.3) as Tc = inf
{
T ≥ τ : −R−1

θ (t+ T )eATRθ(t)CW ⊆
BU for all t ≥ 0

}
. Indeed, to extend the proof of Theorem 25 we need to cancel the following terms appearing

in the calculation of X(T ):∫ T−Tc

0

e−AtRθ(t)Cw(t)dt+

∫ T

Tc

e−AtRθ(t)Bu(t)dt =

∫ T−Tc

0

e−At
[
Rθ(t)Cw(t) + e−ATcRθ(t+ Tc)Bu(t+ Tc)

]
dt,
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where the bracketed term can only be set to 0 for all w(t) ∈ W if the aforementioned extension of Tc holds.

However, this definition of Tc creates a circular dependency of Tc on Rθ(t), which depends on state X(t),

which is in turn modified by controller u relying on Tc. Then, Tc can only be properly defined if it is not

impacted by θ(t). Let us investigate if such a minimal correction time Tc can be defined.

Thanks to the two recursions: A2n+2 = (−1)nΩ2nA2 and A2n+3 = (−1)nΩ2nA3 for all n ∈ N, we can

calculate the exponential series

eAt =


4− 3 cos(Ωt) 0 1

Ω sin(Ωt) 2
Ω

(
1− cos(Ωt)

)
6
(
sin(Ωt)− Ωt

)
1 2

Ω

(
cos(Ωt)− 1

)
−3t+ 4

Ω sin(Ωt)

3Ω sin(Ωt) 0 cos(Ωt) 2 sin(Ωt)

6Ω
(
cos(Ωt)− 1

)
0 −2 sin(Ωt) 4 cos(Ωt)− 3

 .

After the loss of control authority over thruster no. 4, matrices B and C are defined in (10.5). Since the

first two rows of B are null, the first two components of −R−1
θ (t+ Tc)e

ATcRθ(t)C should also be zero for all

t ≥ 0, i.e.,

0 = cos
(
θ(t)

)
sin(ΩTc) + 2 sin

(
θ(t)

)(
1− cos(ΩTc)

)
, (10.9)

0 = 2 cos
(
θ(t)

)(
cos(ΩTc)− 1

)
+ sin

(
θ(t)

)(
4 sin(ΩTc)− 3ΩTc

)
. (10.10)

For (10.9) to hold independently of θ(t), we need Tc =
2π
Ω n, n ∈ N. However, (10.10) would yield sin

(
θ(t)

)
= 0,

which prevents to track trajectory Tref. Therefore, we cannot define a minimal correction time Tc for the

nonlinear spacecraft dynamics (10.3). Then, we cannot cancel exactly Cw(t) after some actuation delay as

we did in Section 8.3.3. Without this perfect cancellation an open-loop controller like in Theorem 25 would

not be able to track a trajectory. We will then transform this controller into a feedback controller.

10.4.2 Closed-loop controller

Motivated by the ISS malfunction [13] where the undesirable thrust was constant, we will assume in this

section that w is Lipschitz. As in Theorem 25 we partition P = BU ⊖ −CW into two parts: Pε for the

feedback correction and Pref for the trajectory tracking, but we want to replace pε by a linear feedback

controller. However, u(t) has only access to X(t− τ) and not X(t), hence a straightforward linear feedback

is not possible. We will replace X(t) by a state predictor Xp(t), designed to predict X(t) based on the

information available at time t− τ . We will use a predictor adapted from [94] which takes advantage of the

system’s dynamics:

Xp(t) = eAτX(t− τ) +

∫ t

t−τ
eA(t−s)rRθ(s)

(
Bu(s) + Cw(s− τ)

)
ds. (10.11)

Before stating our main theorem for resilient trajectory tracking, we recall the definitions of ρmax from

Proposition 36, ρmax = max
{
ρ ≥ 0 : B2(0, ρ) ⊆ P

}
, the log-norm µ(A) = max

{
λ((A + A⊤)/2)

}
, and

the reference trajectory Tref =
{
Xref(t) : Ẋref(t) = AXref(t) + rpref(t) for all t ≥ 0

}
, pref ∈ F(Pref) with

Pref = B2(0, ρref).

Theorem 31: Let K ∈ R4×4 such that Ã := A− rBK is Hurwitz, and let P ∈ R4×4 and Q ∈ R4×4 such that

P ≻ 0, Q ≻ 0 and Ã⊤P + PÃ = −Q. Define α :=
λQ
min

2λP
max

, β := r
√
λPmax∥C∥Lτ , and γ := r∥BK∥ e

µ(A)τ−1
µ(A) .

For L > 0, let ε := ∥BK∥√
λP
min

max
(
∥Xref(0)−X(0)∥P , βα (1 + γ)

)
+ γ∥C∥Lτ .
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If ε+ρref ≤ ρmax, then, for all w ∈ F(W) with a Lipschitz constant L, malfunctioning spacecraft (10.3) can

track reference trajectory Tref with a tolerance
∥∥Xref(t)−X(t)

∥∥ ≤ 1√
λP
min

max
(
∥Xref(0)−X(0)∥P , β

α (1 + γ)
)

for all t ≥ τ .

Proof. The existence of matrix K is justified by the controllability of the pair (A,B) [122]. Since the resulting

Ã is Hurwitz, matrices P ≻ 0 and Q ≻ 0 exist according to Lyapunov theory [121]. We consider any

w ∈ F(W) with a Lipschitz constant L and assume that ε+ ρref ≤ ρmax. We define Pε := B2(0, ε) and recall

Pb = B2(0, ρmax) as introduced in Proposition 36. Then,

Pε ⊕ Pref = B2(0, ε)⊕ B2(0, ρref) = B2(0, ε+ ρref) ⊆ B2(0, ρmax) = Pb ⊆ P.

For t ≥ τ we introduce control signals uw, uref and uε such that Buw(t) := −Cw(t − τ), Buref(t) :=

R−1
θ (t)pref(t) and Buε(t) := R−1

θ (t)BK
(
Xref(t)−Xp(t)

)
with the predictor Xp from (10.11). We consequently

define the feedback control law u by

Bu(t) := Buw(t) +Buref(t) +Buε(t) = −Cw(t− τ) +R−1
θ (t)pref(t) +R−1

θ (t)BK
(
Xref(t)−Xp(t)

)
. (10.12)

To prove that controller (10.12) is admissible we need to show that Bu(t) ∈ BU for all t ≥ τ . Firstly,

Buw(t) = −Cw(t− τ) ∈ −CW. Because Pref is a ball centered on 0, it is invariant by rotation Rθ. Then,

R−1
θ (t)pref(t) ∈ Pref, i.e., Buref(t) ∈ Pref. Since −CW ⊕ Pref ⊕ Pε ⊆ BU , it now suffices to show that

Buε(t) ∈ Pε = B2(0, ε). To do so, we first apply (10.12) to dynamics (10.3). By definition of Tref, we have

rpref(t) = Ẋref(t)−AXref(t), and thus

Ẋ(t) = AX(t) + rRθ(t)Bu(t) + rRθ(t)Cw(t)

= AX(t)− rRθ(t)Cw(t− τ) + Ẋref(t)−AXref(t) + rBK
(
Xref(t)−Xp(t)

)
+ rRθ(t)Cw(t),

i.e., Ẋ(t)− Ẋref(t) = (A− rBK)
(
X(t)−Xref(t)

)
+ rRθ(t)

(
Cw(t)− Cw(t− τ)

)
+ rBK

(
X(t)−Xp(t)

)
.

We define Y (t) := X(t)−Xref(t), ∆C(t) := rRθ(t)
(
Cw(t)− Cw(t− τ)

)
and ∆X(t) := rBK

(
X(t)−Xp(t)

)
so that Ẏ (t) = ÃY (t) + ∆C(t) + ∆X(t). Inspired by the method described in Section 9.3 of [122], we will

now show that Y (t) is bounded, which in turn will prove that Buε(t) ∈ Pε and hence that control law (10.12)

is admissible. We consider the derivative of the norm Y (t)⊤PY (t) = ∥Y (t)∥2P and obtain the following:

d

dt
∥Y (t)∥2P = Ẏ (t)⊤PY (t) + Y (t)⊤PẎ (t) = Y (t)⊤

(
Ã⊤P + PÃ

)
Y (t) + 2Y (t)⊤P

(
∆C(t) + ∆X(t)

)
.

Since ∥ · ∥P is a norm, the Cauchy-Schwarz inequality [100] yields Y (t)⊤P∆C(t) ≤ ∥Y (t)∥P ∥∆C(t)∥P . Then,
using ∥Rθ(t)∥ = 1 and the Lipschitz constant L of w, we have

∥∆C(t)∥P ≤
√
λPmaxr∥Rθ(t)∥∥Cw(t)− Cw(t− τ)∥ ≤ r

√
λPmax∥C∥

∣∣w(t)− w(t− τ)
∣∣ ≤ r

√
λPmax∥C∥Lτ = β.

Similarly,

∥∆X(t)∥P ≤ r
√
λPmax

∥∥BK(X(t)−Xp(t)
)∥∥ ≤ r

√
λPmax∥BK∥∥X(t)−Xp(t)∥.
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We write the state of the system X(t) in a form similar to (10.11) to compare it with Xp:

X(t) = eAτX(t− τ) +

∫ t

t−τ
eA(t−s)rRθ(s)

(
Bu(s) + Cw(s)

)
ds.

Then, reusing the log-norm µ(A) [105] as in Theorem 24, we obtain

∥∥X(t)−Xp(t)
∥∥ ≤

∫ t

t−τ

∥∥eA(t−s)∥∥r∥Rθ(s)∥∥∥Cw(s)− Cw(s− τ)
∥∥ds

≤ r

∫ t

t−τ
eµ(A)(t−s)∥C∥Lτ ds = r∥C∥Lτ e

µ(A)τ − 1

µ(A)
.

Therefore, ∥∆X(t)∥P ≤ r
√
λPmax∥BK∥r∥C∥Lτ e

µ(A)τ−1
µ(A) = βγ, so that

d

dt
∥Y (t)∥2P ≤ −Y ⊤(t)QY (t) + 2∥Y (t)∥P

(
∥∆C(t)∥P + ∥∆X(t)∥P

)
≤ −λQmin

λPmax
∥Y (t)∥2P + 2β(1 + γ)∥Y (t)∥P .

Indeed, Q ≻ 0 yields −Y ⊤QY ≤ −λQminY ⊤Y [122] and ∥Y ∥2P ≤ λPmaxY
⊤Y leads to −Y ⊤Y ≤ −1

λP
max

∥Y ∥2P .
Hence, we obtain

d

dt
∥Y (t)∥2P ≤ −2α∥Y (t)∥2P + 2β(1 + γ)∥Y (t)∥P .

Since d
dt∥Y (t)∥2P = 2∥Y (t)∥P d

dt∥Y (t)∥P , we have d
dt∥Y (t)∥P ≤ −α∥Y (t)∥P + β(1 + γ) for Y (t) ̸= 0. Let us

define the function f(v) := −αv + β(1 + γ). The solution of the differential equation v̇(t) = f
(
v(t)

)
with

initial condition v(0) = ∥Y (0)∥P is v(t) = e−αt
(
∥Y (0)∥P − β

α (1 + γ)
)
+ β

α (1 + γ). Since f(v) is Lipschitz in

v and d
dt∥Y (t)∥P ≤ f

(
∥Y (t)∥P

)
, the Comparison Lemma of [122] states that ∥Y (t)∥P ≤ v(t) for all t ≥ 0.

Then,

∥Y (t)∥P ≤ e−αt
(
∥Y (0)∥P − β

α
(1 + γ)

)
+
β

α
(1 + γ) −−−→

t→∞

β

α
(1 + γ).

Since this bound on ∥Y (t)∥P is monotonic, we have ∥Y (t)∥P ≤ max
(
∥Y (0)∥P , β

α (1 + γ)
)
. Then,

∥Buε(t)∥ =
∥∥R−1

θ (t)BK
(
Xref(t)−Xp(t)

)∥∥ ≤
∥∥R−1

θ (t)
∥∥ ∥BK∥

(
∥Xref(t)−X(t)∥+ ∥X(t)−Xp(t)∥

)
≤ ∥BK∥

(
∥Y (t)∥+ r∥C∥Lτ e

µ(A)τ − 1

µ(A)

)
≤ ∥BK∥∥Y (t)∥P√

λPmin
+ γ∥C∥Lτ ≤ ε,

by definition of ε and using
∥∥R−1

θ (t)
∥∥ = 1. Therefore, Buε(t) ∈ B2(0, ε) = Pε. To sum up,

Bu(t) = Buw(t) +Buref(t) +Buε(t) ∈ −CW ⊕Pref ⊕ Pε ⊆ −CW ⊕P ⊆ BU

for all t ≥ 0. Therefore, control law (10.12) is admissible and the announced tracking tolerance is verified:

∥Xref(t)−X(t)∥ = ∥Y (t)∥ ≤ ∥Y (t)∥P√
λPmin

≤ max

(
∥Y (0)∥P√

λPmin
,
β + βγ

α
√
λPmin

)
.

Theorem 31 provides a controller with trajectory tracking guarantees for the malfunctioning spacecraft

(10.3). The tracking error is dictated by two main terms β and βγ, which respectively bound the prediction
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errors on the undesirable thrust ∥∆C(t)∥P and the state ∥∆X(t)∥P . The term α
√
λPmin is just a conversion

factor between the P -norm and the Euclidean norm. The term ∥Xref(0) − X(0)∥P in the definition of ε

ensures that the controller is robust to initial state uncertainty as discussed in Section 10.3.2. The tracking

tolerance of Theorem 31 can also be interpreted as a convergence radius for the controller. Indeed, in the

proof of Theorem 31 we showed that ∥Xref(t)−X(t)∥ must be small enough for uε(t) to be admissible. If

∥Xref(0)−X(0)∥ is too large, control law (10.12) might not be admissible and the convergence of X(t) to

Tref cannot be guaranteed. The choice of matrices K, P and Q must then be optimized for the controller

to be sufficiently robust to initial state uncertainty. A similar but simplified optimization is discussed in

Exercise 9.1 of [122].

We will now implement controller (10.12) embedded with predictor (10.11) on the malfunctioning spacecraft

dynamics (10.3) to study its performance over the course of the inspection mission and respond to Problem 16.

10.5 Numerical simulation

In this section we study whether controller (10.12) can fulfill the mission scenario of Section 10.2. Recall

that the statement of Problem 16 specifies neither the malfunctioning thruster, nor the regularity of the

undesirable thrust signal w, nor the value of the actuation delay τ . As discussed above Fig. 10.6, tracking the

reference trajectory of Fig. 10.2 appears to only be possible if the malfunctioning thruster is no. 4. Therefore,

we will only investigate scenarios featuring the loss of control authority over thruster no. 4. In such a case

ρmax > 0, which enables us to apply Theorem 31 and use controller (10.12). Then, to address Problem 16 we

will simulate a variety of scenarios with different undesirable thrust signals and different actuation delays.

We perform all the simulations in MATLAB and all the codes are accessible on github2.

10.5.1 Nominal scenario

In this first scenario, we choose an actuation delay τ = 0.2 s following [26] and a Lipschitz constant L = 0.1

for w so that the malfunctioning thrust cannot vary by more than a tenth of its capability every second since

W = [0, 1]. We choose matrices K, P and Q to maximize ε subject to ε ≤ ρmax−ρref, where ρref = 4.85×10−4

is the maximal input norm on the reference trajectory, as seen on Fig. 10.6. Ample numerical testing on

MATLAB led us to believe that the optimal matrices are Q = I and K such that A− rBK has 4 identical

eigenvalues. Then,

P =


2.77 0 1.77 0.01

0 2.77 −0.01 1.77

1.77 −0.01 8 0

0.01 1.77 0 8

 and K = 472


1 1 1 1

1 −1 1 −1

−1 −1 −1 −1

−1 1 −1 1


so that ε = 0.4133 < ρmax − ρref = 0.4137 and the tracking tolerance is β(1+γ)

α
√
λP
min

= 1.5 × 10−4 for

X(0) = Xref(0).

Then, controller (10.12) ensures excellent tracking of the reference trajectory Tref, as shown on Fig. 10.7(a).

We compute the position error between the reference state and the tracking state on Fig. 10.7(b). We observe

that the position error is never larger than 1.07mm and averages only 0.36mm. We acknowledge that these

2https://github.com/Jean-BaptisteBouvier/Spacecraft-Resilience
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extremely small errors are only possible because all dynamics, states and thrusts are known exactly in our

simple simulation.

(a) Trajectory tracking by controller (10.12) (red) linking the
waypoints (green) to inspect the target satellite (red) without
breaching the KOS (yellow).

(b) Position error between the reference and tracking
trajectories.

Figure 10.7: Analysis of the trajectory tracking performance for a stochastic Lipschitz undesirable input w
and actuation delay τ = 0.2 s.

To compare with the tracking tolerance of 1.5 × 10−4, we also compute the norm difference between

the reference and tracking states: ∥X(t) −Xref(t)∥. The average norm difference is 3.6 × 10−4, while the

maximal norm difference is 10.5 × 10−4. Let us investigate why these values are slightly larger than the

tracking tolerance. First, note that ∥X(t)∥2 = x(t)2 + y(t)2 + ẋ(t)2 + ẏ(t)2 where position (x(t), y(t)) is of

the order of 102m as shown on Fig. 10.7(a), while velocity (ẋ(t), ẏ(t)) is of the order 10−1m · s−1. Because

of these orders of magnitudes, the norm difference between reference and tracking states reflects mostly the

position error. Based on Fig. 10.7(b), the maximal norm difference occurs at 3 hours and 6 hours, i.e., at the

waypoints x = ±80m and y = 0m as shown on Fig. 10.7(a). At every other waypoint Fig. 10.7(b) also shows

error spikes albeit of smaller magnitude. Because the sudden stop and start occurring at each waypoint are

not well captured by the discrete dynamics of our simulation, the actual norm difference is larger than the

threshold value of Theorem 31.

The undesirable thrust input w is generated as a stochastic signal, whose magnitude is represented in

yellow in Fig. 10.8(a). To counteract w while following the reference trajectory, the controlled input u verifies

approximately the intuitive relation ∥u∥ ≈ ∥uref∥+ ∥w∥. More specifically, Fig. 10.8(b) shows that thrust

inputs u3 and u5 replicate the reference thrust profile of Fig. 10.3b, while u1 and u2 counteract malfunctioning

thruster no. 4 as expected from their opposite placement on Fig. 10.1.

The fuel consumption on the reference and tracking trajectories is displayed on Fig. 10.9(a). The yellow

curve represents the mass of fuel mw = 1.06 kg used to produce the undesirable thrust, while the red one

shows the mass of fuel mu = 1.31 kg used by the controlled thrusters. The reference trajectory without

malfunctions requires mref = 0.16 kg of fuel. As expected, mu ≈ mref +mw. We have the intuition that the

gap between mu and mref +mw will grow with τ and with the unpredictability of w.

As can be expected from the tracking accuracy displayed on Fig. 10.7, the velocity tracking of the

reference is also extremely accurate with velocities remaining within 0.35mm/s of each others, as illustrated

on Fig. 10.9(b). As on Fig. 10.7(b), the error spikes at each waypoint and displays also the same symmetry

as the orbit.

Based on Fig. 10.7, 10.8 and 10.9, controller (10.12) performs excellently and enables the system to

complete its mission when w is Lipschitz and τ = 0.2 s.

To address Problem 16 we will now study the tracking performance controller (10.12) on a variety of
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(a) Magnitude of the thrust inputs for the reference trajec-
tory ∥uref∥ (blue), for the tracking trajectory the controlled
input is ∥u∥ (red) and the undesirable input is ∥w∥ (yel-
low).

(b) Thrust profiles for the four controlled thrusters of the
chaser satellite on the tracking trajectory.

Figure 10.8: Analysis of the thrust profiles of the malfunctioning satellite for a Lipschitz undesirable input w
and actuation delay τ = 0.2 s.

(a) Comparison of fuel consumption. The mass of fuel
used to complete the reference trajectory is mref (blue).
After the loss of control over thruster no. 4, it consumes
a mass of fuel mw (yellow), while the controlled thrusters
use a mass mu (red).

(b) Velocity error between the reference and tracking tra-
jectories.

Figure 10.9: Comparison of the fuel consumption and velocities for a stochastic Lipschitz undesirable input
w and actuation delay τ = 0.2 s.
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scenarios. The first parameter that we modify is the regularity of the undesirable thrust signal w. Instead of

w being Lipschitz continuous as assumed in Theorem 31, w could be bang-bang. We will also increase the

actuation delay τ until controller (10.12) is unable to track the reference trajectory. The third parameter

modified in these scenarios is the saturation value of w. Indeed, Fig. 10.8(a) shows that w had an average

magnitude of 10−3m/s2, while w is constrained in [0, 1] and hence could be significantly larger.

10.5.2 Lipschitz undesirable thrust and actuation delay of 8 seconds

We first increase the actuation delay τ from 0.2 s to 8 s and keep the same Lipschitz and stochastic undesirable

thrust signal w. The previous guarantees of Theorem 31 are not valid anymore, but controller (10.12) still

performs sufficiently well to not be distinguishable from the reference as in Fig. 10.7(a). Instead, we analyze

the position error shown on Fig. 10.10(a). The trajectory tracks the reference with an average position error

of 1.2mm and a maximal error of 4.1mm. These values are extremely low but still represent a fourfold

increase compared to the scenario with τ = 0.2 s.

(a) Position error between the reference and tracking tra-
jectories.

(b) Comparisons of fuel used to complete the reference
trajectory mref (blue), the tracking trajectory mu (red),
and the fuel used by malfunctioning thruster no. 4 mw

(yellow).

Figure 10.10: Analysis of the trajectory tracking performance for a stochastic Lipschitz undesirable input w
and actuation delay τ = 8 s.

Concerning the fuel efficiency, the pseudo-equality m ≈ mref +mw derived from Fig. 10.9(a) still holds

approximately since mref = 0.16 kg, mw = 1.06 kg and mu = 1.38 kg in this scenario. The controlled thrusters

have only slightly increased their consumption compared to mu = 1.31 kg for τ = 0.2 s. Thus, the actuation

delay does not play as crucial a role for the fuel consumption as for the position error.

10.5.3 Lipschitz undesirable thrust and actuation delay of 10 seconds

If we increase further the actuation delay, e.g. τ = 10 s, controller (10.12) becomes incapable of tracking the

reference trajectory as depicted on Fig. 10.11(a). The velocity on the tracking trajectory is on average four

times larger than the reference.

The position error has also steeply increased compared to the scenario where τ = 8 s since here the

average position error is 0.48m and the maximal error is 3m. These values are still small enough to keep the

tracking trajectory indistinguishable from the reference on a figure like Fig. 10.7(a). However, to maintain
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(a) Velocity comparison for the reference trajectory vref
(blue) and the tracking trajectory v (red).

(b) Comparison of input magnitudes with a saturated
control ∥u∥ (red) orders of magnitude larger than the
reference ∥uref∥ (blue) and the undesirable input ∥w∥
(yellow).

Figure 10.11: Analysis of the trajectory tracking performance for a stochastic Lipschitz undesirable input w
and actuation delay τ = 10 s.

this accuracy, controller (10.12) had to saturate its thrust inputs as shown on Fig. 10.11(b). This input

saturation results in a prohibitive fuel consumption of 503 kg compared to mu = 1.38 kg for τ = 8 s. Now

that we have probed the limits of controller (10.12) in terms of actuation delay, let us investigate the impact

of the regularity of w on the tracking performance.

10.5.4 Bang-bang undesirable thrust and actuation delay of 1 second

In this scenario we keep the actuation delay τ = 1 s, but the undesirable thrust signal w is now bang-bang,

as illustrated on Fig. 10.13(a). This violates the Lipschitz assumption of Theorem 31 and hence invalidates

its performance guarantees.

Controller (10.12) generates a trajectory with an average position error of 0.54mm and a maximal error of

5.6mm as shown on Fig. 10.12(a). These values are comparable to the precision achieved in the scenario where

w was Lipschitz and τ = 8 s. As expected, increasing the unpredictability of w from Lipschitz to bang-bang

led to a degradation of the tracking performance. Concerning the fuel usage in this scenario, Fig. 10.12(b)

shows that the bang-bang thrust signal yields a significant consumption increase to mw = 4.86 kg compared

to 1.06 kg in the Lipschitz scenarios. This increase is reflected on the controller’s fuel usage mu = 5.33 kg,

which remains close to mref +mw = 5.02 kg.

Every time the undesirable thrust climbs to its maximum value, the controller reacts after a delay τ and

with a 50% higher spike to makeup for this delay, as illustrated on Fig. 10.13(a). This overshoot explains the

increased mass of fuel consumption by the controlled thrusters. Note also the similarity between Fig. 10.12(a)

and 10.13(a), each position error spike is associated with a spike of w.

Since controller (10.12) is still able to track the reference trajectory, we will consider a more challenging

scenario with an increased actuation delay.

10.5.5 Bang-bang undesirable thrust and actuation delay of 8 seconds

We increase the actuation delay to τ = 8 s while keeping the same bang-bang undesirable thrust signal as in

the previous scenario. The overshoots of the controller have become much larger at three waypoints as shown
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(a) Position error between the reference and tracking tra-
jectories.

(b) Comparisons of fuel used to complete the reference
trajectory mref (blue), the tracking trajectory mu (red),
and the fuel used by malfunctioning thruster no. 4 mw

(yellow).

Figure 10.12: Analysis of the trajectory tracking performance for a bang-bang undesirable thrust signal w
and actuation delay τ = 1 s.

(a) Actuation delay τ = 1 s. (b) Actuation delay τ = 8 s.

Figure 10.13: Magnitude of the thrust inputs for the reference trajectory ∥uref∥ (blue), the tracking trajectory
∥u∥ (red), and the bang-bang undesirable input ∥w∥ (yellow) for different actuation delays.

on Fig. 10.13(b), while the overshoots at other locations have an amplitude similar to that of w. These large

spikes are still an order of magnitude smaller than those of Fig. 10.11(b), so the controller is not saturating

yet.

The average position error with respect to the reference trajectory is 1.76mm and the maximal error is

19.4mm. These values represent approximately a fourfold increase compared to the scenario of Section 10.5.4.

As in the Lipschitz cases where we also witnessed a fourfold increase between τ = 0.2 s and τ = 8 s, the

increased actuation delay has significant impact on the tracking accuracy.

The undesirable thrust still consumes mw = 4.86 kg of fuel, but the controller now needs mu = 6.56 kg

according to Fig. 10.14(b) instead of 5.33 kg for τ = 1 s. This consumption increase is most likely caused

by the large thrust spikes of Fig. 10.13(b). As in the Lipschitz case, the increased actuation delay does not

have a significant impact on the fuel consumption. However, if we increase τ to 10 s, then the situation is

similar as that of Section 10.5.3 with a prohibitive increase in fuel consumption to keep the malfunctioning

spacecraft close to the reference orbit.
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(a) Position error between the reference and tracking tra-
jectories.

(b) Comparisons of fuel used to complete the reference
trajectory mref (blue), the tracking trajectory mu (red),
and the fuel used by malfunctioning thruster no. 4 mw

(yellow).

Figure 10.14: Analysis of the trajectory tracking performance for a bang-bang undesirable thrust signal w
and actuation delay τ = 8 s.

In all scenarios tested so far, the undesirable thrust signal was saturated at 1% of its capability to have ∥w∥
of the same order of magnitude as ∥uref∥ as depicted on Fig. 10.8(a). In the first scenario ∥u∥ was also of the

same order of magnitude. However, we see in this scenario that u sometimes needs to significantly overshoot

w. Therefore, we must also investigate the scenario where w has access to its whole thrust capability, i.e.,

w(t) ∈ [0, 1], to assess whether it can be counteracted by u despite its saturation limit.

10.5.6 Saturated Lipschitz undesirable thrust and actuation delay of 2 second

We will now investigate the case of a Lipschitz undesirable thrust input w where L = 0.1, max{w(t), t ≥ 0} = 1

and τ = 2 s. Since w makes use of its full range of thrust actuation, the controlled thrusters might reach their

own saturation limit. The simulation results show the undesirable thrust signal meeting both its saturation

limits, w(t) ∈ [0, 1] as seen on Fig. 10.15(a). The controlled thrusters however, do not reach their own

saturation since the individual magnitude of each thruster never reaches 1 on Fig. 10.15(b), except at 1 hour

30 minutes. This saturation can also be seen on Fig. 10.15(a) where ∥u∥ =
√
2.

Based on Fig. 10.15(b), we can see that thruster no. 2 is producing the thrust necessary to counteract w.

Thruster no. 1 is actually matching u2, just as in Fig. 10.8(b), except that we cannot see it on Fig. 10.15(b)

because u2 covers u1. The average position error is contained to 48mm, while the maximal position error is

0.29m as shown on Fig. 10.16(a). Then, the tracking trajectory stays sufficiently close to the reference to not

be distinguishable on a figure like Fig. 10.7(a). The tracking velocity presents large fluctuations above the

reference velocity as shown on Fig. 10.16b(b) while staying much closer than in the scenario of Section 10.5.3

where v was entirely above vref as seen on Fig. 10.11(a).

Because of the large thrusts employed in this scenario, the masses of fuel consumed have also significantly

increased. The controlled thrusters would need mu = 360 kg of fuel, while the malfunctioning thruster is

guzzling mw = 342 kg of fuel over the 7.5 hours of the mission. These masses are relatively close, within 5%

of each other, which tells us that the controller is not wasting too much extra fuel in overshoots, it uses only

what is needed to counteract w. However, recall that our spacecraft mass was set at 600 kg. Thus, if such a

malfunction were to happen, the thrusters would run out of fuel before completing the mission. Nevertheless,
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(a) Comparison of input magnitude between the reference
∥uref∥ (blue), tracking control ∥u∥ (red) and the saturated
undesirable input ∥w∥ (yellow).

(b) Thrust profiles for the four controlled thrusters of the
chaser satellite on the tracking trajectory.

Figure 10.15: Analysis of the thrust inputs for a Lipschitz undesirable thrust signal w and actuation delay
τ = 2 s.

(a) Position error between the reference and tracking tra-
jectories.

(b) Velocity comparison for the reference trajectory vref
(blue) and the tracking trajectory v (red).

Figure 10.16: Analysis of the trajectory tracking performance for a Lipschitz undesirable thrust signal w and
actuation delay τ = 2 s.
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while fuel is available, we now know that controller (10.12) can compensate time-varying undesirable thrust

of maximal amplitude.

With the same Lipschitz undesirable thrust signal, but an actuation delay τ = 3 s instead of 2 s, the

trajectory quickly diverge from the reference. This was somewhat predictable from the saturation of u2 in

Fig. 10.15(b). Let us now study how controller (10.12) would fare against a bang-bang undesirable input of

similar magnitude.

10.5.7 Saturated bang-bang undesirable thrust and actuation delay of 1 second

In this scenario w is bang-bang in [0, 1] and the actuation delay is τ = 1 s. The simulation shows clearly

the bang-bang behavior of the undesirable thrust signal on Fig. 10.17(a). The controlled thrusters are also

reaching their own saturation limit of 1 on Fig. 10.17(b), except at 1 hour 30 minutes. This saturation can

also be seen on Fig. 10.15(a) where ∥u∥ =
√
2.

(a) Comparison of input magnitude between the reference
∥uref∥ (blue), tracking control ∥u∥ (red) and the bang-
bang undesirable input ∥w∥ (yellow).

(b) Thrust profiles for the four controlled thrusters of the
chaser satellite on the tracking trajectory.

Figure 10.17: Analysis of the trajectory tracking performance for a bang-bang undesirable thrust signal w
and actuation delay τ = 1 s.

As shown on Fig. 10.18(a), the average position error is 17.1mm and the maximal position error is 0.5m,

so both trajectories are still indistinguishable on a figure like Fig. 10.7(a). We note the presence of a velocity

spike on Fig. 10.18(b) for each spike of w on Fig. 10.17(a).

As in the previous scenario, the fuel consumption is too large for the mission to be completed with such

a malfunctioning thruster, but while it is active it can be actively counteracted by u1 and u2 as shown on

Fig. 10.17(b). The masses of fuel consumed by u and w are also relatively close, within 3% of each other,

with mu = 345 kg and mw = 336 kg, which relates to the efficiency of the controller.

If we further increase the actuation delay to τ = 2 s for the same undesirable thrust w, the trajectory

quickly diverge from the reference. Since the controlled inputs were already saturated for τ = 1 s as seen on

Fig. 10.17(b), the controller was not able to overcome a more unpredictable w and this divergence is not

surprising.

10.5.8 Summary of the simulation scenarios

Let us now summarize and compare the scenarios studied. For each of these scenarios, we compute the average

and maximal position errors, the mass of fuel used by the controlled thrusters mu and by malfunctioning
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(a) Position error between the reference and tracking tra-
jectories.

(b) Velocity comparison for the reference trajectory vref
(blue) and the tracking trajectory v (red).

Figure 10.18: Analysis of the trajectory tracking performance for a bang-bang undesirable thrust signal w
and actuation delay τ = 1 s.

thruster no. 4 mw. We also calculate the relative difference of fuel used mu−mw−mref

mw+mref
, which is a good metric

for the efficiency of controller (10.12) in overcoming w without excessive thrust. We summarize these metrics

in Table 10.1.

Scenario
Regularity
of w

Actuation
delay τ

Saturation
of w

Average
position
error

Maximal
position
error

Controlled
fuel used
mu

Undesirable
fuel used
mw

Relative
difference
of fuel used

1 Lipschitz 0.2 s 0.01 0.36mm 1.05mm 1.31 kg 1.06 kg 7.4%

2 Lipschitz 8 s 0.01 1.2mm 4.1mm 1.38 kg 1.06 kg 13.1%

3 Lipschitz 10 s 0.01 484mm 3×103mm 503 kg 1.06 kg 41× 103%

4 bang-bang 1 s 0.01 0.54mm 5.6mm 5.33 kg 4.86 kg 6.2%

5 bang-bang 8 s 0.01 1.76mm 19.4mm 6.56 kg 4.86 kg 31%

6 Lipschitz 2 s 1 48mm 292mm 360 kg 342 kg 5.2%

7 bang-bang 1 s 1 17.1mm 509mm 345 kg 336 kg 2.6%

Table 10.1: Summary table of the simulation scenarios.

As expected, when actuation delay τ increases, so do the position error and the relative difference of fuel

used. Indeed, the controller has more difficulty counteracting w and needs to use more corrective thrust when

τ is larger.

The hundredfold increase in position error and mu between scenarios 2 and 3 when τ only increased from

8 s to 10 s shows that controller (10.12) has reached its limit. Indeed, the trajectory diverges when τ > 10 s.

In scenarios 4, 5 and 7, the undesirable thrust signal w is bang-bang, as illustrated on Tables 10.2 and

10.3. A bang-bang undesirable input violates the Lipschitz assumption of Theorem 31 and hence invalidates

its performance guarantees. Nonetheless, controller (10.12) generates a tracking trajectory with position

errors of the same order of magnitude as for Lipschitz continuous w.

When comparing scenarios 2 and 5, we see that increasing the unpredictability of w from Lipschitz to

bang-bang led to a degradation of the tracking performance.

In scenarios 1 to 5, the undesirable thrust signal was saturated at 1% of its capability to have ∥w∥ of the

same order of magnitude as ∥uref∥ as depicted on Fig. 10.8(a). In the nominal scenario ∥u∥ was also of the

same order of magnitude as shown on Fig. 10.8(a). In scenarios 6 and 7, w has access to its whole thrust
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capability, i.e., w(t) ∈ [0, 1], to assess whether it can be counteracted by u despite its saturation limit.

Because of the large thrusts employed in scenarios 6 and 7, the masses of fuel consumed have also

significantly increased. The controlled thrusters would need mu = 360 kg of fuel, while the malfunctioning

thruster is guzzling mw = 342 kg of fuel over the 7.5 hours of the mission. These masses are relatively close,

within 5% of each other, which tells us that the controller is not wasting too much extra fuel in overshoots, it

uses only what is needed to counteract w. However, recall that our spacecraft mass was set at 600 kg. Thus,

if such a malfunction were to happen, the thrusters would run out of fuel before completing the mission.

Nevertheless, while fuel is available, we now know that controller (10.12) can compensate time-varying

undesirable thrust of maximal amplitude.

If we increase the actuation delay of scenarios 6 and 7 by 1 s each, their trajectory quickly diverge from

the reference. This was somewhat predictable from the saturation of the controlled input magnitude ∥u∥ in

Table 10.3.

The average position errors listed in Table 10.1 are small enough to keep the tracking trajectory indistin-

guishable from the reference on a figure like Fig. 10.7(a). Then, we focus on the more informative graphs of

the position error associated with the corresponding thrust profiles for each scenarios grouped together in

Tables 10.2 and 10.3.

Let us now summarize the findings of the various scenarios studied. Despite the narrow range of application

of Theorem 31, controller (10.12) provides tracking accuracy to the millimeter scale on a much wider range

of scenarios than expected with fast-varying undesirable inputs and longer actuation delays. In all the

scenarios, the magnitude of the controlled thrusters ∥u∥ had to be larger, if not significantly larger than

∥w∥ to counteract its nefarious influence. This is problematic when w reaches its maximal amplitude as u

is more likely to saturate. However, scenarios 6 and 7 showed that for small actuation delays, w can still

be counteracted. We can visually summarize the performance of controller (10.12) with the Pareto front of

Fig. 10.19 on the saturation limit of w and the actuation delay τ . Based on the scenarios investigated in this

section, we decided to consider the tracking successful when the position error is smaller than 0.8m, which is

1% of the minimal target distance on the reference trajectory.

Figure 10.19: Pareto front of the maximal saturation limit of w for which controller (10.12) maintains a
position error under 0.8m despite actuation delay τ .
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Scenario Position error Input magnitudes

2

3

4

5

Table 10.2: Position error and input magnitude profiles across scenarios 2 to 5.
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Scenario Position error Input magnitudes

6

7

Table 10.3: Position error and input magnitude profiles in scenarios 6 and 7.
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10.6 Summary

In this chapter we presented a new methodology to safely perform a satellite inspection mission despite

actuation delay and the loss of control authority over a thruster. We established theoretical trajectory

tracking guarantees on a resilient controller embedded with a state predictor to compensate for the actuation

delay. We tested this controller on a variety of scenarios increasingly adversarial to determine the capabilities

of our controller. We concluded that it enables a resilient tracking of the reference trajectory and a safe

completion of the inspection mission.
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Chapter 11

Conclusions and Future Work

We have now reached the final chapter of this dissertation. In Section 11.1 we will summarize the work

accomplished so far, before concluding on the success of our approach to address our problems of interest in

Section 11.2. Finally, we will highlight several interesting avenues for future work in Section 11.3.

11.1 Summary

In chapter 2 we reviewed the literature related to resilience theory. We studied how resilience fits within the

wider approaches of robust, adaptive and fault-tolerant control. We also compared our theory with other

notions of resilience found in the literature. Finally, we introduced previous works studying reachability,

controllability, differential games theory, and time optimal linear control upon which resilience theory is built.

In chapter 3 we took our first shot at Problem 1 relying on our earliest work on resilience [31]. We

established the foundational resilience theory for linear systems with bounded energy. We built on the highly

abstract perturbed reachability condition of [24] to derive simple analytical conditions for resilient reachability

of driftless linear systems and to understand how reachability evolves with time.

In chapter 4 we relied on our work [35] to investigate the design of resilient driftless linear systems with

bounded energy and to solve Problem 2. We built on the resilient reachability condition of Chapter 3 to

calculate the minimal degree of overactuation necessary for a system to be resilient to the loss of control over

any single one of its actuators. We also synthesized a control law achieving resilient reachability for linear

systems.

In chapter 5 we switched gear to study the resilience of linear systems with component bounded inputs

and we introduced the notion of quantitative resilience. Relying on our works [32], [38], we used linear optimal

control to design an efficient method to calculate the quantitative resilience of driftless linear systems. This

chapter’s objective was then to address Problem 3.

In chapter 6, we described the proof of the Maximax Minimax Quotient Theorem. This optimization

result was used in Chapter 5 to calculate the quantitative resilience of driftless systems. This proof was

published in our work [36] and relied on a geometrical approach of input selection. We also proved the

existence of a solution to this optimization problem with the Berge Maximum theorem [1].

In chapter 7 we extended resilience theory to general linear systems with drift by addressing Problems 1

and 3. We drew from our works [33], [37] and relied on differential games and linear control theories to

establish necessary and sufficient conditions for the resilience of general linear systems. We also calculated
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analytical bounds on the quantitative resilience of these systems.

In chapter 8 based on our work [39], we took our first step towards Problem 4. We started by investigating

more complex mission scenarios than resilient reachability by deriving sufficient conditions for resilient

trajectory tracking. Then, we extended resilience theory to linear systems with actuation delays to remove

the assumption of instantaneous knowledge of the undesirable inputs by the controller. Finally, we derived a

sufficient resilience condition for systems with nonlinear dynamics.

In chapter 9 we extended resilience analysis to linear networks suffering partial loss of control authority.

We mostly studied how an unresilient subsystem suffering from a partial loss of control authority can affect

the stabilizability of the rest of the network. This chapter also contributed to address Problem 4 by extending

the framework of resilience theory to linear networks.

In chapter 10 we investigated the resilience of an orbital inspection mission to the loss of control authority

over a thruster of the inspecting spacecraft. This chapter drew from our works [34], [39] and contributed

to Problem 4 by extending resilience theory to the nonlinear dynamics of a spacecraft. For these nonlinear

dynamics we also built a resilient trajectory tracking controller with guaranteed performance.

11.2 Conclusion

We set out to address four central problems of interest stated in Section 1.2. Let us now assess whether we

successfully solved these problems.

Problem 1 wondered about the conditions for a target set to be resiliently reachable. In Chapters 3 and 4,

we established necessary and sufficient conditions for targets to be resiliently reachable by linear systems

with energy bounded inputs thanks to the perturbed reachability theory of [24]. In Chapters 5, 7 and 8,

we established resilient reachability conditions for systems with amplitude bounded inputs and respectively

driftless, linear and nonlinear dynamics thanks to the differential games theory of [23].

Problem 2 asked how to design systems that are resilient to a loss of control authority over any one of

their actuators. We answered this question in Chapter 4 by proving that at least 2n+1 actuators are required

for a n-dimensional driftless system to be resilient. We also poked at the design problem of resilience to the

loss of control over any two actuators, but this problem is considerably more complex for the reasons detailed

in Chapter 4.

Problem 3 shed light on the difficult optimization problem prompted by the calculation of quantitative

resilience. In Chapter 5 we established a method to calculate analytically the quantitative resilience of

driftless linear systems thanks to the Maximax Minimax Quotient Theorem of Chapter 6. Since an exact

calculation of quantitative resilience is impossible for general linear systems, Chapter 7 instead established

analytical bounds on their nominal and malfunctioning reach times T ∗
N and T ∗

M in order to bound their

quantitative resilience.

Problem 4 asked the wider question of how to extend the scope of resilience theory. In Chapter 8 we

investigated resilient trajectory tracking, added actuation delay to the controller and established some simple

resilience conditions for nonlinear dynamics. In Chapter 9, we further extended the scope of our theory by

studying the resilience of linear networks. Finally, in Chapter 10 we showed that resilience theory can be

applied to nonlinear spacecraft dynamics.

On the whole, we thoroughly solved Problems 1, 2 and 3, while establishing major milestones for the

much broader Problem 4. Indeed, this last problem of interest cannot be answered thoroughly and prompted

numerous avenues for future work that we will now discuss.
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11.3 Future work directions

Following the work accomplished in this dissertation, we now give recommendations to be considered for

future research on the topic of resilience of control systems to partial loss of control authority over actuators.

Concerning the quantitative resilience of driftless linear systems, the main results of Chapter 5, namely

Theorems 11 and 12 only apply to the loss of control over a single actuator. This limitation comes in fact

from the Maximax Minimax Quotient Theorem of Chapter 6 where one of the optimization sets must be

unidimensional. Future work should then investigate how to generalize the Maximax Minimax Quotient

Theorem to enable the calculation of quantitative resilience of systems enduring a simultaneous loss of

multiple actuators.

We also want to extend our notion of resilience from the system’s state to its output. This would allow to

assess the resilience of some systems with respect to some of their states instead of considering all the states

together. For instance, after a quadcopter loses control over one of its propeller, it becomes underactuated

and cannot resiliently reach arbitrary states of position and orientation. However, if we relinquish control

over its yaw angle, such a quadcopter can in fact resiliently reach arbitrary positions, pitch, and roll angles

according to the work [8]. With an output gathering these crucial states, this quadcopter would then be

output resilient.

Adding an actuation delay to the controller as in Chapter 8 allowed to make our resilience framework

more realistic. The next step in this direction would be to consider the effects of measurements and process

disturbances. By adding some noise to the measure of w(t) transmitted to the controller, we could evaluate

the robustness of resilient controllers with respect to their knowledge of the undesirable inputs. Additionally,

if the controller does not know exactly the dynamics of the system, it might not be able to accurately thwart

the undesirable inputs. Thus, we should also investigate the robustness of resilient controllers with respect to

their knowledge of the system dynamics.

Finally, the major and most complex avenue for future work is to further extend resilience theory to

nonlinear systems. Indeed, we only established a sufficient condition for resilience in Chapter 8. Once a

complementary necessary condition is found, resilience theory will be able to study more realistic systems

with more accurate dynamics. For instance, the dynamics of the octocopter of Chapter 5 would conserve all

their nonlinear complexity and coupling between position and rotations. In Chapter 9, we would be able to

study more realistic networks, especially power networks. Finally, nonlinear resilience theory would allow

to extend the approach of Chapter 10 to spacecraft dynamics combining position and attitude for a more

realistic treatment.

A first step towards nonlinear resilience theory would be to verify our intuition concerning whether the

reverse implication of Theorem 26 holds. To do so, one could select a simple nonlinear system and find optimal

strategies for u and w either by hand or using machine learning. If this approach leads to a counterexample

it would avoid wasted theoretical efforts. Otherwise, it would provide a numerical example for this novel

nonlinear resilience theory.
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