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Calculating low-thrust trajectories that connect geocentric orbits to Earth-moon halo orbits

involves designing the many-revolution thrust arc required to depart Earth vicinity. Existing

methods are based on solving the corresponding optimal control problem and hence are compu-

tationally expensive, involve providing hard-to-obtain initial guesses, anddonot lend themselves

well to quick parametric trade studies. In this paper, a stochastic optimization algorithm is

coupled with a Lyapunov feedback control law to explore the solution space for designing

Earth-to-halo low-energy low-thrust trajectories. While the objective is to minimize the fuel

consumed for the transfer, the time of flight is constrained so as to optimally distribute the

coast time between the low-thrust escape spiral and the low-energy arc. Engines are assumed

to have a constant specific impulse and provide constant thrust throughout the transfer. The

results obtained from thismethod are then comparedwith other available reference solutions in

order to quantify its effectiveness in designing such transfers. Favorable comparisons thus ob-

tained demonstrate the utility of the proposed method in calculating almost-optimal solutions,

combined with a large improvement in computation time.

I. Introduction

Dynamical structures inherent to the circular restricted three-body system have been shown to play a significant

role in the design of optimal spacecraft trajectories [1, 2]. These structures provide low-energy pathways in the

cislunar region that are of specific interest for potential applications in space infrastructure deployment. Within this

region, the unstable halo orbits around the collinear Earth-moon Lagrange points L1 and L2 are being examined to serve

as staging nodes for expansion of human space activities [3]. Trajectories that leverage these unstable periodic orbits

and their associated invariant manifolds allow transfers within the cislunar region for lower costs than the conventional

ones [4].

Achieving these same transfers with low-thrust propulsion is currently a growing research field because higher mass

fractions can be delivered, albeit at the cost of longer times of flight. A sample low-thrust trajectory between Earth and
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a halo orbit can be conducted by breaking up the journey into two phases – a spiral thrust arc that departs the given

Earth parking orbit and targets the invariant manifolds associated with the halo orbit, followed by a coast arc on the

manifold. Previous studies have used different thrusting strategies to design such transfers by casting them into optimal

control problems and using gradient-based techniques like nonlinear programming (NLP) to solve them. Senent et al.

[5] studied low-thrust transfers to libration point orbits in the sun-Earth/moon system via their manifolds using variable

specific impulse engines. A similar problem in the Earth-moon three-body system was solved by Ozimek and Howell

[6] by employing iterative continuation to lower the thrust value until problem constraints were satisfied. Other efforts

by Mingotti et al. [7–11] used the concept of attainable sets to seed initial guesses for low-thrust low-energy transfers

in the Earth-moon system and sun-perturbed Earth-moon system, as well as in the sun-Earth/moon system. Constant

specific impulse engines were assumed for these trajectories. Martin and Conway [12] further refined the solution to the

Earth-to-halo transfer problem by including the low-thrust escape spiral as a part of the optimization setup. Optimal

low-thrust low-energy transfers commencing with ballistic escape from Earth-orbit (i.e., impulsive maneuver provided

by launch vehicle) in patched three-body problems have also been studied [13, 14].

Solving these optimal control problems usually requires the mission designer to seed initial guesses using an

understanding of the underlying dynamics (e.g., through the use of Poincaré sections) or generate them by solving

a homotopically similar problem or continuation techniques. This task can be non-trivial and time consuming.

Additionally, solving the fully-formulated optimal problem can be computationally intensive as it can suffer from the

curse of dimensionality typically associated with transfers consisting of significant spiraling (on the order of tens or

hundreds of revolutions) and the iterative nature of NLP methods. Since these methods usually consume substantial

computational resources to generate single point solutions, they also do not lend themselves well to rapid trade studies.

To alleviate this issue, simpler shape-based methods or feedback-driven control laws can be used to design the

spiral thrust arcs as orbital transfers around the primary bodies. Shape-based low-thrust trajectory design methods

usually assume tangential control direction and output the thrust levels needed to achieve the transfer [15, 16]. In the

past, they have been wrapped inside stochastic solvers to determine the best solutions that satisfy practical engineering

constraints [17, 18]. On the other hand, feedback control laws are pertinent for designing trajectories that constant-thrust

constant-specific impulse engines can execute. These control laws use Lyapunov control theory [19, 20] or blend optimal

control directions [21, 22] for each orbital element to calculate the thrust profile using knowledge of only the current and

target states. The steering direction provided by blending optimal control directions is adequate for simpler problems,

but Lyapunov-based control laws are usually more robust to the demands of complex transfers. Though generally

suboptimal, they can be used to generate fully feasible initial guesses for higher-fidelity gradient-based optimization

methods since they use significantly less computational resources and are relatively easy to implement. This also allows

them to serve as good approximations for calculating the costs associated with a transfer, namely the time of flight and

propellant mass consumed.
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The problem of designing LELT trajectories is a challenging one due to the many revolutions required for the transfer

and coordinating the use of coast arcs with the system dynamics. Existing methods of designing low-thrust low-energy

(LELT) transfers are ineffective for preliminary trajectory analysis because of high computational effort and the need

for successive preprocessing. This gap is critical for the planning of support and logistics for crew missions, where

early-stage mission analysis tools capable of quick tradespace exploration are required. In response to this literature gap,

we propose a methodology for preliminary design of low-energy low-thrust (LELT) transfers using a Lyapunov-feedback

control law called Q-law within a particle swarm optimization (PSO) algorithm. We demonstrate the utility of this

Q-law LELT trajectory design with PSO (QLEPSO) tool by designing a trajectory to deliver a spacecraft from a

geocentric parking orbit to an Earth-moon L1 (EML1) halo orbit. The many-revolution thrusting phase of the transfer is

approximated using Q-law, which has already been proven effective within two-body system dynamics [23, 24]. To

complete the LELT transfer, the low-thrust spiral arc must be patched together with a terminal coast arc on the invariant

manifold that delivers the spacecraft to the destination halo orbit. In this study, the PSO is employed to identify the ideal

patch points on the manifolds, concurrently with the tunable parameters in the formulation of Q-law and the initial

parking orbit. The primary objective of this paper is to develop and validate a method that can help provide rapid

estimates of time-constrained low-energy low-thrust trajectories involving many revolutions. We demonstrate that the

proposed method significantly improves computational efficiency while achieving near-optimal solutions.

The method developed here, designated as QLEPSO, is detailed in Section II. This procedure is then demonstrated

on a selected case study in Section IV and the sample trajectories generated are validated against reference solutions

available in the literature in Section V.

II. Description of QLEPSO Solution Method
The problem being considered here is that of preliminary design of minimum-fuel time-constrained low-thrust

low-energy trajectories in a three-body system. The method developed here can be used to support mission design

analysis, for example to seed initial guesses for more accurate trajectory analysis tools, conduct large scale trade studies,

or for approximating mission costs in space logistics tools [25]. QLEPSO is specifically demonstrated on a transfer that

originates at an Earth orbit and delivers the spacecraft to a halo orbit located at the Earth-moon L1 Lagrange point

(EML1). The complete trajectory consists of two phases – the powered escape spiral to raise the spacecraft’s orbit until it

is delivered to the manifold, followed by a ballistic coast on the manifold, which is the low-energy pathway that leads to

the desired halo orbit. The two phases are patched together at a point on the manifold surface. A stochastic optimization

algorithm is then utilized to determine the ideal values of the design parameters that control the two phases, as well

as the patch point itself. This algorithm uses cooperative swarm techniques to find solutions that minimize the fuel

consumption while satisfying the time-of-flight constraint.

This trajectory being designed is thematically sketched in Figure 1. The process of designing the low-energy phase
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Fig. 1 Problem overview

and the low-thrust phase of the transfer is described first in this section, followed by the procedure to patch them together

to yield the desired solutions.

A. Halo Orbits and Associated Invariant Manifolds for Low-Energy Transfers

The dynamics of the circular restricted three-body problem (CR3BP) are used to model the trajectory of a spacecraft

in cislunar space:

Üx − 2 Ûy = ∂Φ

∂x
+ ux

Üy + 2 Ûx = ∂Φ

∂y
+ uy

Üz = ∂Φ

∂z
+ uz

(1)

where Φ =
1
2
(x2 + y2) + 1 − µ√

(x + µ)2 + y2 + z2
+

µ√
(x − (1 − µ))2 + y2 + z2

.

µ is the ratio of mass of the smaller primary (i.e., moon) to the sum of mass of both primaries, Φ is the potential function,

and (ux, uy, uz) are the components of thrust. Ballistic motion is modeled by setting the thrust components to be zero.

These equations are derived in the rotating reference frame whose origin lies at the barycenter of the Earth-moon system;

the units have been normalized such that angular velocity of the system, distance between the primaries and the sum of

masses of the primaries are all unity.

Five points of gravitational equilibrium emerge in this system, called the Lagrange points. The three collinear

Lagrange points lie one each on either side of the primaries and one in between them in the rotating frame. Linear
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stability analysis of the collinear Lagrange points reveals them to be unstable, thereby giving rise to many families

of unstable periodic orbits in their vicinity. Halo orbits are one such family of non-planar periodic solutions. In the

current work, halo orbits of desired out-of-plane amplitude (Az) are generated by direct transcription and collocation

[12], with initial guess solutions provided by Richardson’s third-order analytical approximation [26]. The manifolds can

be generated by using the eigenvalues of the monodromy matrix and are time-invariant in the three-body frame. At a

point along the halo orbit x(ti), if the eigenvectors corresponding to the smallest and the largest real eigenvalues of the

monodromy matrix are given as VWs and VWu respectively, then perturbed state at that point is given as:

Xs = x(ti) ± εVWs

Xu = x(ti) ± εVWu

(2)

In this way, the states on the orbit are perturbed by a small value ε in the direction of the eigenvectors and propagated

forward (or backward) in time using the ballistic form of Equation 1 to generate the unstable (or stable) manifold. A

body of negligible mass placed on the stable manifold approaches the halo orbit asymptotically, while it can depart the

same halo orbit on its unstable manifold. For certain energies of the halo orbits, these manifolds structurally resemble

tubes; however, this tube-like structure is lost in regions of dynamic instabilities such as close encounters with either of

the primary bodies. Each type of manifold consists of two branches, one that initially moves towards the larger primary

in the system and the other that initially moves away from it. In this paper, we concentrate on designing transfers from

Earth to halo orbits and hence focus on the Earth-approaching branch of the stable manifold.

Every point on the manifold structure can be parametrized using two values – point of origin of the corresponding

manifold trajectory on the halo orbit, τh , and time to reach the halo once on that manifold, τm. The halo orbit insertion

parameter (τh) represents the normalized position around the periodic orbit with respect to the point where the maximum

out-of-plane amplitude is achieved. The manifold insertion parameter (τm), on the other hand, is time propagated to

arrive at the given point on the manifold. The direction of propagation is forward in time for the case of the unstable

manifold, and backward for generating the stable manifold.

B. Feedback Control Law for Low-Thrust Orbital Transfers

Q-law is a Lyapunov feedback control law developed by Petropoulos [20, 27] for designing low-thrust orbital

transfers around a primary body. Based on Gauss variational equations, it decides the thrust direction at any point

during the trajectory based on the “remaining distance to go” and can target defined changes in all orbital elements

except true anomaly. Q-law has been previously used successfully to provide good initial guesses for optimal transfers

[23, 28] using constant specific impulse, constant thrust engines in a two-body system model. It provides a non-iterative

alternative to calculating a low-thrust transfer between arbitrary orbits, thereby providing a computationally efficient
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control law.

The basis of calculating these transfers is the following proximity quotient Q, a candidate Lyapunov function that

quantifies the proximity of the current orbit to the target orbit [20]:

Q =
(
1 +WpP

) ∑
œ

WœSœ

[
d(œ,œT )
Ûœxx

]2
(3)

where œ denotes the instantaneous values of the orbital elements being targeted and the subscript T denotes their target

values. Wp and Wœ are scalar weights such that Wœ is non-zero for those elements being targeted and Wp is non-zero

when enforcing a minimum periapse condition using the penalty function P. Sœ is the scaling function and d(œ,œT ) is

the distance function, which denotes the difference between current and target orbital elements pertinent in the current

case. In the implementation within this paper, no minimum periapse condition is enforced (i.e., Wp = 0 and thus P is

omitted). On the other hand, the scaling function Sœ is chosen as suggested by the original Q-law formulation to aid in

convergence of the semi-major axis to its target value:

Sœ =


[
1 +

(
a − aT
3aT

)4
] 1

2

for œ = a

1 for œ = e, i

(4)

The term Ûœxx in Equation 3 denotes the maximum rate of change of orbital element due to thrust over thrust direction

and over true anomaly. Analytic expressions for it are derived by using the Gauss variational equations (below). If the

perturbing acceleration f is given by its components ( fr, fθ, fh) in the radial, circumferential and angular momentum

directions respectively, then:

da
dt
=

2a2

h

(
e sin θ fr +

p
r

fθ
)

de
dt
=

1
h
{p sin θ fr + [(p + r) cos θ + re] fθ }

di
dt
=

r cos(θ + ω)
h

fh

dΩ
dt
=

r sin(θ + ω)
h sin i

fh

dω
dt
=

1
eh
{−p cos θ fr + (p + r) sin θ fθ } −

r sin(θ + ω) cos i
h sin i

fh

dθ
dt
=

h
r2 +

1
eh
{p cos θ fr − (p + r) sin θ fθ }

(5)

where t = time, p = semilatus rectum, h = angular momentum of the orbit, and r = radius from the central body =

6



p/(1 + e cos θ). By representing the vector of orbital elements as X, the above equations can be reduced to this form:

ÛX = Ψ(X) · f (6)

The perturbing acceleration f consists of the thrust provided by the spacecraft as well as the third-body gravitational

perturbation by the moon. However, only acceleration provided by the low-thrust engine is included for the purpose of

deriving the expressions for Ûœxx , and thus the Lyapunov-optimal control. If T = thrust provided by the engines, m = mass

of the spacecraft, α = in-plane thrusting angle and β = out-of-plane thrusting angle, then the vector fLT representing the

control acceleration vector provided by the low-thrust engines, specified by its components ( f LTr , f LTθ , f LT
h
), is:

f LTr = f LT cos β sinα

f LTθ = f LT cos β cosα (7)

f LTh = f LT sin β

where f LT = |fLT | = T
m
. By setting Ûœxx = max

α,β,θ
Ûœ with f = fLT , the corresponding terms in the expression for Q can

be obtained from Equation 5 as:

Ûaxx = 2 f LT
√

a3(1 + e)
µ(1 − e)

Ûexx =
2p f LT

h
(8)

Ûixx =
p f LT

h
(√

1 − e2 sin2 ω − e| cosω |
)

The proximity quotient Q in Equation 3 is now fully defined. Its value is zero at the target orbit and positive along the

transfer trajectory. The thrust direction at any instant along the transfer is calculated such that the proximity quotient is

driven to zero as quickly as possible, i.e., the direction in which ÛQ attains its most negative value. By applying Lyapunov

control theory, the instantaneous optimal control vector can be derived using the notation in Equation 6 as:

fLT = −ΨT

(
∂Q
∂X

)T
(9)

Symbolic differentiation was employed at this juncture to determine the Q-law control expressions.

Although the Lyapunov-optimal control in the above equation is derived without considering third-body perturbing

forces, the effect is included while propagating the system equations (Equation 5). Gravitational perturbations due to the

effect of the moon are dominant in this problem and the angular position of the moon in the Earth-fixed frame (λ) is

7



appended to the system equations for state propagation as:

dλ
dt
= n% (10)

where n% is the mean motion of the moon as it orbits the Earth. The perturbing acceleration in Equation 5 becomes:

f = fLT + f% (11)

where f% = µ%
(

r% − r
|r% − r|3

− r%

|r% |3

)

The components of r (spacecraft position vector) and r% (position vector of the moon) in the radial, circumferential and

angular momentum directions are as follows and are meant for substitution into Equation 11:

r%r = a% [cos θ cos(λ% −Ω) + cos i sin θ sin(λ% −Ω)] rr = r

r%θ = a% [− sin θ cos(λ% −Ω) + cos i cos θ sin(λ% −Ω)] rθ = 0 (12)

r%
h
= a% [− sin i sin(λ% −Ω)] rh = 0

The mass of the spacecraft is also tracked along the trajectory, through the following equation:

dm
dt
=
−T
gIsp

(13)

where g = standard acceleration due to gravity and Isp = specific impulse imparted by the low-thrust engine.

To reiterate, the current Q-law implementation calculates the optimal thrust direction without accounting for the

third-body perturbations, but they are indeed included during system propagation. The algorithm also implements

fixed-step integration as prescribed in the original work [27]. Additionally, the mechanism for coasting available within

the original Q-law is implemented to allow thrusting during portions of the trajectory where it is most effective to do so.

The absolute effectivity at any true anomaly is given as:

ηa =
ÛQn

ÛQnn

(14)

where ÛQn = min
α,β
ÛQ and ÛQnn = min

θ
ÛQn. A cut-off value ηcut , can be chosen for this parameter to prevent the spacecraft

from thrusting if the value of absolute effectivity is below ηcut . This parameter, in effect, manages the extent of coasting

during the transfer phase governed by this control law. In addition to this mechanism for controlling coasting periods,

the effect of eclipse periods can also be included as unplanned shut-offs, though not implemented here.
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Although Lyapunov methods have no guarantee of convergence, Q-law has been empirically shown to converge

to the target orbit for a broad range of orbital transfers [27]. It has also been shown to provide rapid and acceptable

estimates of the trajectory behavior and the performance costs of orbital transfers within a two-body perspective [29].

In this paper, this same feedback control law is applied in a three-body system to design the powered section of the

trajectory that connects to the low-energy pathway. The complete process is described in Section II.C.

C. Complete LELT Trajectory Design

By breaking down the desired LELT trajectories as orbital transfers around the primary body (Earth), with the stable

manifold providing “free” transport to the destination three-body periodic orbit, Q-law can be applied here to design the

escape spiral. As an example to demonstrate this strategy, consider a trajectory from an initial Earth parking orbit to an

EML1 halo orbit. The spacecraft must be delivered to the stable manifold for a ballistic transfer to the corresponding

halo orbit. Once the manifold is generated, all the points on this manifold are considered viable targets for the low-thrust

arc. The equivalent classical orbital representation of these target points is found by converting the coordinates from the

Earth-moon rotating frame to an Earth-centered inertial frame. These candidate patch points have fixed true anomalies

and so, Q-law has to be propagated backwards in time starting from the final manifold location (i.e., the patch point)

and ending at initial parking orbit. A complete LELT trajectory can be designed in this manner for each point on the

manifold. This trajectory is refined by use of advantageous values for decision variables, selected by a stochastic particle

swarm optimization (PSO) algorithm. The complete procedure to design the Q-law LELT trajectories using a PSO,

dubbed QLEPSO for brevity, is summarized in Figure 2.

Fig. 2 Overview of the QLEPSO method

1. Cost Function

The LELT trajectories being designed here will consist of two phases connected with each other at the manifold

patch point – the orbit raising phase consisting of many revolutions around the Earth, and the final coast arc on the

manifold that asymptotically brings the spacecraft to the halo orbit. The objective for this complete LELT trajectory is

to minimize the propellant mass consumed. Reduction in consumed propellant mass is typically obtained at the cost

of higher time of flight (TOF) in low-thrust trajectory solutions. Thus, the transfers in this study are sought for fixed
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flight times, where the flight time includes the intermittently powered escape spiral as well as the ballistic coast on the

manifold. Mathematically, this optimization problem can be stated as:

minimize
x

J(x) = mpropellant

subject to f(x) ≤ bC

bL ≤ x ≤ bU,

where x =
[

aT ,
Wa

Wi
,

We

Wi
, ηcut, τh, τm,

]T
.

(15)

This problem is restricted by two constraints, one regarding the initial parking orbit and the other relating to the allowable

maximum time of flight. Additionally, the decision variables are also subject to bounds. These constraints (f(x) and bC)

and the problem bounds (bU and bL) are described in detail after introducing the decision variables.

2. Decision Variables

The decision vector x is comprised of variables that determine the cost of the transfer. Within the described LELT

trajectory design strategy, values of the following variables can be judiciously selected to construct cheaper transfers:

1) Parking orbit specification→ aT

2) Variables in Q-law computations→ Wa

Wi
,

We

Wi
and ηcut

3) Manifold patch point selection→ τh and τm

Following the trajectory in its temporal order, the first parameter that can be optimized is the parking orbit from which

the spacecraft begins its journey. The two common launch orbits are the low Earth orbit (LEO) and the geosynchronous

transfer orbit (GTO), which is used to deliver satellites to their operational geosynchronous Earth orbit (GEO). Although

some previous LELT trajectory design studies have selected the GTO as the initial parking orbit [7, 12], some benefit

could be realized by optimizing this orbit itself. The search space for this initial parking orbit is limited in the current

study by the ∆v that can be imparted by the launch vehicle, which differentiates it from the analysis in previous works

such as [9] and [10]. This available ∆v is calculated by fixing the perigee at LEO altitude and then calculating the single

impulsive maneuver required to raise the orbit from LEO to GTO (with no inclination change):

∆vbudget = vGTO
p − vLEO

p (16)

The subscript p denotes perigee in the above equation. Given this ∆v budget after launch, two parameters can be

changed: the apogee and the inclination of the initial parking orbit for the LELT journey. This ∆v can be distributed

optimally between increasing the semi-major axis and changing the inclination of the parking orbit, such that the residual

changes required to reach the manifold can be executed by the low-thrust phase of the trajectory. However, since the
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semi-major axis and inclination of the parking orbit that can be achieved in this manner is constrained by the ∆v budget

considered earlier, only one of them needs to be a decision variable. Assuming that a single maneuver conducted at

perigee places the spacecraft into its parking orbit, this constraint can be expressed as:

∆vbudget =

√(
v

park
p

)2
+

(
vLEO
p

)2 − 2vpark
p vLEO

p cos∆i (17)

where v
park
p =

√
µ⊕

(
2
rp
− 1

aT

)
Thus, the selection of the parking orbit can be completely parametrized by its semi-major axis aT . This is possible due

to the assumption that the parking orbit is achieved by a single impulse after launch. If multiple impulses are allowed,

additional parameters may be included in the decision vector to match the new problem structure.

Consequent to determination of the Earth parking orbit, the low-thrust phase of the transfer is calculated using Q-law.

Only three orbital elements of the parking orbit are targeted – semi-major axis (a), eccentricity (e) and inclination (i) –

and so only three weights (Wa,We,Wi) need to be specified. The other secular elements of the initial parking orbit

(i.e., ω and Ω) are only incidentally chosen by the optimal solutions and can be matched by adjusting the time frame

of the spacecraft launch or its insertion into the parking orbit. The low-thrust phase can be optimized by tuning the

weights of Q-law by using the relative values of Wa, We and Wi in the form of Wa/Wi and We/Wi , as well as the value

of ηcut . The coefficients in the original formulation of the scaling function Sœ in Equation 4 (refer [20, 27]) could also

be included in the decision vector; however, sensitivity of the low-thrust trajectory to these parameters has been shown

to be negligible [24].

The final optimization variables select the manifold patch point that separates the powered section of the trajectory

from the purely ballistic portion. It is parametrized by the halo orbit insertion parameter τh and the manifold insertion

parameter τm. As explained before, τh is the normalized position; the value of zero (and one due to periodicity)

commonly indicates the point at which the halo orbit achieves its maximum value along the positive Z-axis. Similarly,

τm is typically specified in normalized time units (in the Earth-moon rotating / synodic frame). In order to clearly

indicate the direction of propagation, τm is negative for the stable manifold and positive for the unstable manifold. Once

the spacecraft is inserted onto the manifold at the patch point specified by τm and τh , it travels ballistically to the desired

halo and completes the transfer.

3. Constraints

Given this solution approach, the optimization problem in Equation 15 is subject to certain constraints and bounds.

The first constraint regards the relationship between the decision variable aT and other parameters that definitively
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specify the initial parking orbit through the ∆v budget. Combining Equations 16-17, the constraint translates to:

f1(x) = bC1

where f1(x) = f (aT ) =
√
(vpark

p )2 + (vLEO
p )2 − 2vpark

p vLEO
p cos∆i (18)

and bC1 = ∆vbudget = vGTO
p − vLEO

p .

The underlying assumption here is that the entire budget available to the launch vehicle is exhausted in achieving the

parking orbit, prior to commencing the low-thrust phase. This allows for a more equitable calculation of propellant

mass consumed in different candidate solutions. The second constraint considers the time of flight restriction and is

expressed as:

f2(x) ≤ bC2

where f2(x) = gQ−law

(
aT ,

Wa

Wi
, We

Wi
, ηcut

)
+ |τm | (19)

and bC2 = TOFmax .

The function gQ−law produces the time of flight required to complete the orbit raising spiral and is calculated

simultaneously as the objective function (i.e., ∆mpropellant ) by using Q-law. The time spent coasting on the manifold

in order to complete the second phase of the transfer is simply equal to the absolute value of τm. This τm takes a

negative value when used to parameterize the stable manifold because the stable manifold is obtained by propagating the

CR3BP system equations backward in time. In addition to these constraints, the search space of the decision variables is

restricted by means of upper and lower bounds. These bounds are problem specific and their selection for the current

sample case is outlined in Section III.

4. Selection of Optimization Algorithm for LELT Trajectory Design

In previous work, the search space was confined to two decision variables (τh and τm) and hence was amenable to

a straightforward grid search [30]. However, within the current problem setup, the search space is composed of six

dimensions and thus attempting all configurations is computationally challenging. Stochastic optimization algorithms

are well suited to explore the solution space for the current problem in an automated manner without much guidance

from the user. In previous works that investigated the applications of different stochastic optimization techniques, the

general consensus is that the choice must align with the problem structure for effectiveness. In the current work, we

have chosen the particle swarm algorithm due to its compatibility with the current problem structure where the search

space associated with each of the decision variables is continuous, as well as its higher speed of convergence∗ [31].
∗vs. differential evolution and simulated annealing, when applied to a general class of benchmark problems
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Although the PSO is chosen in this work, it is expected that other algorithms such as differential evolution can also be

applied successfully.

The PSO algorithm, originally introduced by Kennedy and Eberhart [32], is driven by cooperation between particles

in a swarm by exchange of information about the best-found-solutions. This guides the motion of the initial population

towards the optimal point. Beginning with a randomly generated initial random swarm of N particles, x0
j where

j = 1, 2, ...N , the new position of the particle j at the (k + 1)th iteration is calculated as:

xk+1
j = xkj + vk+1

j

where vk+1
j = Civkj+CcR1(pj − xkj ) + CsR2(gk − xkj )

(20)

The constants Ci,Cc and Cs are the inertial, cognitive and social weighting coefficients respectively. The fitness of all

particles is evaluated at each iteration to determine the best position of each particle over time, pj , and the best global

value in the current swarm, gk . R1 and R2 are randomly generated numbers that lie between 0 and 1, selected from

a uniform distribution. If a particle strays outside the specified boundary, the algorithm handles it by setting those

components equal to the corresponding bound. The algorithm terminates either when maximum number of iterations

NIT is reached, or when the solution has not improved (i.e., has stalled) for NST iterations.

5. Method of Treating Constraints

Two constraints are present in the current problem (Equation 15-19). Constraints can be treated within the PSO

algorithm using the “penalty” method [33, 34], where penalties commensurate with the constraint violations are added to

the candidate’s fitness function evaluation. However, finding ways to reduce complexity of implementation by exploiting

problem structure can benefit the computational resource consumption.

In the problem under consideration, the first constraint is a linear equality that deals with controlling the initial

parking orbit where the low-thrust journey begins. Due to the structure of the problem, the linear equality constraint in

Equation 18 can be interpreted as placing bounds on the value of aT instead. Its lower bound is set at aT = aLEO, which

corresponds to the limiting case where the launch vehicle expends its entire budget to make only an inclination change.

The upper bound is calculated in an opposite manner by setting ∆i = 0 in Equation 17, resulting in aT = aGTO. This

implementation allows the use of the simpler unconstrained (but bounded) versions of optimization algorithms in the

absence of any other constraints.

On the other hand, the inequality constraint in Equation 19 restricts the time of flight. Two methods were considered

here to handle this constraint, (1) the previously mentioned penalty method, (2) a simple strategy of assigning a fictitious

high cost to infeasible candidate solutions (similar to the strategy used in [35] to treat inequality constraints). In trials,

the constrained optimization method by employing penalties to feasibilize candidates (method #1) converged to final
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solutions in less number of iterations than the second strategy. However, the overall computational runtime was longer

because the optimizer needs to evaluate very long (infeasible) Q-law flight time solutions during the optimization. The

simpler approach (method #2) worked well during the course of this work due to low computational runtimes from

bounding the Q-law flight times. Candidate solutions that exceed the time of flight constraint are simply marked within

the fitness function to consume all of the available mass.

III. Problem Setup for Case Study
The LELT trajectory design process described in this paper is demonstrated on a transfer that starts at a geocentric

parking orbit and delivers the spacecraft to an EML1 halo orbit. The PSO algorithm used in this work is the native

particleswarm available in MATLAB [36]. Progression of this algorithm can be controlled by setting different values

for Cc,Ci and Cs, as used in Equation 20 for updating velocity of particles at each iteration. The values used in this

study are charted out in Table 1, along with the conditions for terminating the PSO run. All requisite integration is

conducted in corresponding nondimensionalized units within the cost function, with the intent of properly scaling and

conditioning the numerical integration process. Three-body (CR3BP) nondimensional units are used for halo and

manifold generation (where 1DU = distance between Earth and moon), and two-body nondimensional units used within

Q-law implementation (where 1DU = Earth radius).

Table 1 PSO algorithm parameters

Parameter Value
Inertial weight Ci [0.1, 1.1]

Cognitive weight Cc 1.49
Social weight Cs 1.49

Number of particles N 200
Maximum number of iterations allowed NIT 200

Number of stall iterations allowed NST 20

Table 2 Q-law algorithm parameters

Parameter Value
Fixed time step 1000 s

Integration scheme RK6 [37]
Target convergence radius for a 10 km
Target convergence radius for e 0.005
Target convergence radius for i 0.005 rad

Weight on inclination change Wi 1

The LELT trajectory is assembled using the values of decision variables selected by the PSO. The low-thrust engine

used to affect this trajectory is assumed to provide a constant thrust of 0.7 N and a fixed specific impulse of 3000 s. The

final mass delivered to the halo orbit is fixed at 1000 kg. This means that the spacecraft’s final thrust acceleration is

7×10−4m/s2. The low-thrust trajectory is designed using the Q-law algorithm with the parameters specified in Table 2.

No minimum periapse constraint is enforced and so Wp is set to zero.

The PSO algorithm also requires definition of the search space with respect to each component of the decision vector

(x in Equation 15). In order to do so, suitable bounds are defined on each decision variable as specified in Table 3. These

bounds are either derived from the problem structure or assumed so as to confine the search space to a finite region. The

first decision variable is the semi-major axis of the initial Earth parking orbit (aT ). Its perigee altitude (hp) is fixed at
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Table 3 Bounds on decision variables

Parameter Lower bound Upper bound
aT 6563 km 24510 km

Wa/Wi 0.001 1000
We/Wi 0.001 1000
ηcut 0 0.5
τh 0 1
τm -3π TU -1π TU

400 km, while its apogee and inclination are free to vary. These two parameters are however constrained by a ∆v budget

equal to that required for a transfer between LEO and a GTO-sized orbit at perigee with an impulsive maneuver:

∆vbudget = vGTO
p − vLEO

p = 2.3988 km/s (21)

Once the optimizer (i.e. the PSO) selects the semi-major axis aT of the parking orbit, then its inclination can be

calculated by substituting the above ∆vbudget in Equation 17. In the current implementation, this constraint is instead

expressed as a bound on aT as in Table 3 – the lower bound is set at the orbital size that can be achieved is the entire ∆v

budget is used to change inclination (i.e., lower bound set at LEO), while the upper bound is set where the available

budget is used completely for apogee raising only (i.e., GTO). As described earlier, this calculation is based on the

assumption that this ∆v budget is completely consumed to reach the parking orbit.

Table 4 GTO and GEO specifications

Parameter GTO GEO
Semi-major axis a 24510 km 42164 km

Eccentricity e 0.7234 0.005 †

Inclination i 23.43◦ 23.43◦

Argument of periapse ω Free Free
Longitude of ascending node Ω Free Free

Table 5 EML1 halo orbit specifications

Parameter Value
Amplitude Az +8000 km

Type Northern
Period 11.924 days

Initial position [0.823383, 0, 0.020812] DU
Initial velocity [0, 0.133228, 0] DU/TU

The inclination of the parking orbit is expressed with respect to the Earth-moon plane. When the parking orbit is

allowed to vary freely, the angular separation from the nominally-inclined LEO imparted by the launch vehicle depends

on the how of its fuel budget was consumed for raising the apogee. In certain comparative cases of later sections, the

parking orbit is fixed at geosynchronous transfer orbit (GTO) (Table 4) in order to match conditions of the past studies.

Assuming that the GTO lies in the Earth’s equatorial plane, its specified inclination reflects the mean angular separation

between the Earth’s equatorial plane and the plane of the moon’s orbit. The angular separation of these two planes

varies between 18.28◦ and 28.58◦ [38]. Similarly, the GEO specifications are defined in Table 4 for later use. However,
†Nominal non-zero value specified to avoid singularity in Gauss variational equations
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for the sample case used for demonstration of the method, the inclination is allowed to freely vary within the ∆vbudget

constraint as explained earlier.

Once the parking orbit is selected, the Q-law computations can begin. The next two variables in the decision vector

are related to the performance of Q-law and control the rates at which the semi-major axis and eccentricity converge to

their target values with respect to the convergence speed of inclination to its target value. Instead of focusing on the

absolute values of these variables, it is sufficient to find their relative values, thereby controlling the relative magnitudes

of the components of the instantaneous control vector. Reasonable bounds are chosen for these variables. The fourth

decision variable (ηcut ) decides the placement and duration of coast arcs within the escape spiral and its lower bound is

set to zero (i.e. continuous thrust escape spiral with no coasting). While the natural upper bound on this effectivity cutoff

approaches unity (which involves a coast-only trajectory with TOF approaching infinity), the upper bound is set to 0.5

instead. This educated estimate improves the convergence properties of the PSO by guiding it to a feasible region faster.

The EML1 halo orbit used in this work follows the specifications presented in Table 5. A perturbation ε of 5 km

(Equation 2) is used to generate the Earth-approaching branch of the stable manifold. It is propagated backwards in

time for 3π normalized time units (synodic TU), a time span that converts to little more than 40 days. The manifold

surface exposed for selection of insertion points covers at least two closest approaches to Earth and the solution space is

thus deemed large enough for practical engineering purposes. This setup decides the bounds on the last two decision

variables. The penultimate variable τh (halo orbit insertion parameter) is already normalized and bound between 0 and

1. Since the values of the final decision variable, τm, are negative for the stable manifold, the lower bound on τm is the

time at which the (backward) integration of the manifold is terminated (−3π here). The upper bound is placed where all

the manifolds have approximately departed the lunar sphere of influence (SOI), which is approximately −π in this case.

The radius of this SOI, centered at the moon, is calculated as [39]:

rSOI ≈ a%
(

m%

m⊕

) 2
5

= 66183.85km.

The part of the manifold surface of interest in this sample problem is the section that lies beyond the lunar SOI; this

represents the low-energy search space for the current case study. These bounds on τm represent the region where

Q-law is effective, because it is derived using the two-body equations of motion (lunar gravity is added as third-body

gravitational perturbation during propagation only). Within the boundaries of the lunar SOI, the derived equations will

still produce feasible solutions even though the control directions dictated by Q-law would be less effective. This case

is simulated in a later section in order to compare QLEPSO results with those found in the literature, where control

dictated by Q-law is used for direct delivery to the halo orbit even though the spacecraft’s state places it inside this lunar

sphere of influence.

Although the current sample case handles LELT transfer to the EML1 halo, the use of this lunar SOI also aids
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design of transfers to EML2 halo orbits, whose Earth-approaching stable manifold branch crosses the moon first. In the

absence of this bound on τm, using the QLEPSO method to design such transfers may otherwise involve using Q-law

derived in the Earth-centered frame too close to the moon. Additionally, such transfers would require stricter bounds to

be derived and used on the variable τh because certain sections of the manifold surface originating at EML2 halo orbits

do not approach Earth after their lunar flyby.

IV. Results
The PSO algorithm is run for six trials with 200 particles and the optimization results are organized in Table 6. For

these runs, the total TOF is constrained to be less than or equal to 90 days. This value of maximum TOF is chosen so as

to simplify the process of comparison with results from independent past studies in later sections. The stochastic nature

of particle swarm optimization gives rise to variance in the results presented by each run. Table 6 summarizes the results

from five identical trial runs of the PSO, beginning with randomly distributed particle positions and velocities. This

table proves that the variance of results is within a narrow range and hence acceptable.

Table 6 QLEPSO results for total TOF ≤ 90 days

Parameter Run #1 Run #2 Run #3 Run #4 Run #5
Raw values of decision variables

aT , km 24294.2907 24282.4559 24290.4436 24375.4808 24311.8243
Wa/Wi 588.4616 636.6509 830.1153 89.4069 212.4609
We/Wi 814.2662 836.2408 946.7234 122.6418 296.5848
ηcut 0.0771 0.0743 0.0668 0.0764 0.0773
τh 0.7343 0.7245 0.7377 0.7441 0.7335

τm, synodic TU −1.000π −1.002π −1.0043π −1.0017π −1.000π

Qualitative properties of solutions
Orbit raising TOF, days 76.3542 76.3542 76.2847 76.3310 76.3426

Manifold coast TOF, days 13.6427 13.6456 13.7014 13.6657 13.6432
Mass fraction consumed, % 7.7708 7.7769 7.7911 7.7607 7.7688

Some useful insights can be gathered from the results in Table 6. Tracing the trajectory again in its temporal order

of phases, the results show that almost the entire ∆v budget available to the launch vehicle is used to raise its initial

parking orbit to the size of GTO, keeping its inclination (with respect to the Earth-moon plane) close to zero. This can

be explained by two intuitive causes: (1) the inclination of all the points on the manifold surface lies within 3◦ of the

Earth-moon plane, and (2) the low-thrust trajectory may be able to better satisfy the constraint on the flight time by

starting at the parking orbit with the highest permitted apogee. Thus the optimal parking orbit chosen represents the

upper limit placed on the aT variable; this observation is consistent with that made by Kluever [40] when designing

combined chemical-electric transfers to GEO.
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The other noticeable feature is the range of values of the Q-law weights exhibited in the five runs; however, the ratio

of Wa/Wi to We/Wi remains approximately constant (≈ 0.7 − 0.8). This can be explained by the Q-law formulation

where the three components of the thrust vector are decided by the relative (not absolute) values of the weights. The

trajectory corresponding to fourth trial run is presented in Figure 3. The regions that the Q-law decides to coast (within

the escape spiral) are noticeable and occur at the apogees. The length of the manifold coast arc is minimal and the spiral

escape arc seen to deliver the spacecraft very close to the halo orbit.

Fig. 3 Complete trajectory to best patch point found using QLEPSO

Another prominent feature of the QLEPSO solutions is the consistent selection of the lowest allowed value of τm

(refer Table 3), which identifies the portion of the journey spent coasting on the manifold. By minimizing the length of

this manifold coast arc, the optimizer seeks to maximize the amount of coasting allowed within orbit raising portion of

the transfer. These results are in contrast with a separate study that conducted LELT trajectory design using Q-law [41],

where an attempt to enable large-scale tradespace exploration was made by heuristically deriving the optimal manifold

patch point. This metric, referred to as Qp , consisted of weighted sum of relative “distance” between a point on the halo

orbit’s manifold and the Earth parking orbit. The manner of selecting patch points with low values of Qp reflects the

fundamental directive of Q-law to reduce the distance between the starting and destination orbits. As a general trend,

this Qp reduced in value as the stable manifold was propagated farther backwards in time; thus, the points on the section

of the manifold surface far away from the halo orbit were selected as patch points. In the referenced study, the physical

neighborhood of the heuristically chosen manifold patch point was then iteratively explored in order to find solutions
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that satisfied a given time-of-flight constraint. The Q-law weights were set to unity for this purpose. However, the

results from the current analysis imply that delivering the spacecraft as close to the halo orbit as allowable is the optimal

strategy when constraining the total time of flight. This allows the orbit-raising spiral arc to consume the majority of the

coasting budget, thereby naturally reducing the propellant consumed for the transfer by leveraging the orbital dynamics

instead. Though the analysis in [41] was conducted for transfer to an EML2 halo orbit and the results here pertain to

EML1 halo orbit, similar reasoning is expected to apply. Thus, the patch point that separates the low-thrust phase and

the low-energy phase must be chosen with care and the current method can effectively do so, as shown by the trend

within the optimal QLEPSO constrained-TOF solutions to pick manifold patch points close to the target halo orbit.

V. Comparison with Reference Methods/Solutions
In this section, the results from the QLEPSO method developed here are compared with reference methods/solutions

to quantify its accuracy for designing low-energy low-thrust transfers in the three-body system. Available methods

in the literature have used different techniques to design LELT trajectories. Here, QLEPSO is first compared with

other heuristic methods available in the literature and then with solutions obtained using deterministic gradient-based

methods.

A. Use of Tangential Thrust for Orbit Raising Arc

The first reference study chosen is provided by Abraham et.al. [42] where a method for preliminary mission analysis

was developed and used to design a transfer from a GEO-energy orbit to a large-amplitude halo orbit. In this reference,

the LELT trajectory is similarly constructed using a PSO, with the exception of the control law used to design the

low-thrust phase. The escape spiral in [42] instead employs tangential control, where thrust acceleration is applied in

the opposite direction as the spacecraft’s velocity in the CR3BP frame. Beginning at the manifold patch point, this

escape spiral is propagated backward using three-body dynamics (Equation 1) until an orbit matching the energy of

GEO is achieved. The following cost function was used in [42] within a local PSO to determine solutions where the

terminating GEO-energy orbit is also circular:

Jabraham = k1(eterminate − edesired) + k2∆T + k3∆m (22)

where ∆T is the total time of flight and ∆m is the propellant consumed. eterminate is the osculating eccentricity at the

termination of the backward propagated thrust arc, while its desired value, edesired , is zero (i.e., eccentricity of GEO).

A process for selecting values of the constants k1, k2, k3 depending on the expected values of the three terms in the cost

function is detailed in the original work. The values used here are k1 = 1, k2 = 0.002 and k3 = 0.001.

For this analysis, the QLEPSO method outlined here, as well as the tangential thrust method, is applied first to the
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halo orbit chosen in [42] (EML1 Az≈72000km). First off, the method in the reference is replicated and tangential control

law is used for the orbit raising spiral. Next, the same transfer is calculated using Q-law, where the GEO specified

in Table 4 is used as the parking orbit. The PSO decision variables in this case are reduced to those identifying the

manifold patch point (τh and τm) and ηcut is set to zero to simulate continuous thrust trajectories. The parking orbit (aT )

is also fixed. The value of GEO-energy, unreported in the original reference, is assumed to be 9.6 [43]. The comparison

between the two cases is shown in Table 7. For each case calculated here, the best of ten PSO runs is reported – five for

stable plus manifold, five for stable minus manifold, both of which approach Earth for the case of this large-amplitude

halo orbit.

Table 7 Transfer to EML1 halo orbit with Az = 72000km

Optimal cost eterminate Total Mass fraction
(Equation 22) TOF consumed

Solution reported in [42] 0.1201 0.0019 ≈116.077 days 6.0733%
(26.73 TU)

Method used in [42] 0.1194 ∼0 116.767 days 6.1619%
QLEPSO 0.1286 0.0051 113.106 days 6.6692%

The optimal cost reported in the first row of Table 7 is taken from [42] and is included here in order to corroborate

the current implementation of tangential thrust control law. Differences between the first two rows of Table 7 may arise

due to inconsistencies in the value of GEO-energy or perturbation ε used for manifold generation. Another contributing

factor could be the removal of the condition from [42] that τh take only certain discrete values. The QLEPSO solution

also consumes more fuel due to the substantial change in inclination commanded in the problem setup, instead of the

incidental change in inclination that can be achieved using tangential control.

Despite accounting for these factors, the results in the last two rows of Table 7 seem to indicate that tangential

control law is more suitable for designing the LELT journey to the selected halo orbit. In order to demonstrate the

real advantage of using Q-law over tangential thrust, this analysis is then repeated for the smaller halo orbit (EML1

Az≈8000km) defined in Table 5 and the results are presented in Table 8.

Table 8 Transfer to EML1 halo orbit with Az = 8000km

Optimal cost eterminate Total Mass fraction
(Equation 22) TOF consumed

Method used in [42] 0.4019 0.3128 60.4443 days 5.7770%
QLEPSO 0.1565 0.0068 93.6938 days 9.6227%

When designing transfers to the smaller halo orbit, the use of tangential control during the low-thrust arc is unable to

circularize the orbit within the time required to achieve GEO-energy. The desired outcome of this trajectory design is

to bring the eccentricity close to zero; the tangential control method is only able to achieve an eccentricity of 0.3128
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using the objective function in Equation 22, whereas QLEPSO was able to bring it all the way to 0.0068, which is an

almost circular orbit. This is in addition to accomplishing the high inclination change. Though the time of flight and

fuel consumed are smaller in the case where tangential thrusting is used, it failed to produce feasible solutions where the

essential condition regarding the parking orbit’s eccentricity was satisfied. These results underscore the practicality of

using QLEPSO when using more general settings. Furthermore, using the method developed in this paper allows for

targeting of arbitrary parking orbits instead of only low-eccentricity, low-inclination orbits.

B. Use of Gradient-Based Methods

The accuracy of the LELT design method developed in the current work is quantified in this section by comparing

our results with those obtained by using gradient-based methods. Apart from conveying the accuracy of solutions, this

comparison will also demonstrate the advantage of QLEPSO in terms of computational efficiency. The first point of

comparison is provided by previous studies that searched for locally minimum point solutions while minimizing a

single objective function. This discussion is then concluded by showing comparable performance with a hybrid optimal

control method that is capable of minimizing competing objectives.

Local Search: Minimum-Time Solutions

Mingotti et al. [7] conducted one of the earliest studies applying optimal control techniques to design (fixed Isp)

low-thrust transfers to halo orbits in the Earth-moon CR3BP via their manifolds. This early study ignored the inclination

between GTO and the Earth-moon plane. Tangential thrusting was used for a majority of the thrust arc under the

assumption that it allows for maximal increase in instantaneous energy. The simplifying assumptions used in [7] were

removed by Martin et al. [12], where the control history along the entire thrust arc was optimized. The inclination of

GTO was assumed to lie between 18.45◦ and 28.45◦. A result from the work of Zhang et al. [44] is also used here,

in which minimum-time low-thrust transfers were designed to directly transfer to a selected point on the halo orbit

without traversing its stable manifold. Due to the modeling paradigm used in [44], the transfer reported here‡ provides

the approximate lower bound on the total time of flight from GTO to the EML1 halo orbit of 8000 km out-of-plane

amplitude. This means that the time-of-flight constraint applied to the problem must be greater than the ∼56 days

required for continuous thrust trajectories to reach the halo orbit. Throughout these comparisons, the applicable caveat

is that the reported value of thrust acceleration used in the current paper is its final value (i.e., at delivery to the halo

orbit) due to its inherent nature of backward propagation, while the referenced studies use the same value as their initial

thrust acceleration. Table 9 catalogs the comparison of our results with these past analyses where a similar trajectory

was designed from GTO to EML1 halo orbit of Az = 8000km. These QLEPSO runs are conducted by eliminating aT as

a design variable and instead fixing the initial parking orbit at GTO. The maximum allowable total time-of-flight is set
‡for the closest matching value of thrust acceleration
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at 90 days.

The method developed in this paper generates solutions with mass delivery fractions within 3% of the optimal

solutions found through deterministic gradient-based methods. The LELT trajectories in [7] and [12] consist of the same

phases as in the QLEPSO method, where the spacecraft’s orbit is raised using low-thrust engines until it is delivered

to the stable manifold. The difference, however, is that while the referenced studies use continuous thrust to reach

the manifold, our method allows coast arcs within the orbit raising phase. Due to the intrinsic nature of low-thrust

trajectories, allowing coast arcs within a transfer reduces fuel consumption at the cost of longer flight times. In this case

however, a spacecraft being delivered to the manifold is bound to spend time coasting on it anyway; this coast time is

reallocated by the QLEPSO solution to the orbit raising phase with the purpose of reducing fuel consumption. This

reassignment of coast locations is the root cause of low mass propellant consumption in the transfer designed using

QLEPSO.

Table 9 Comparison with solutions from literature

Orbit raising Coast TOF on Total TOF Mass fraction
TOF (days) manifold (days) (days) consumed

Mingotti et al. [7] Unreported Unreported 91.5 8.92%
Martin et al. [12] 47.1023 41.9463 89.0486 9.68%
Zhang et al. [44] 56.2458 - 56.2458 11.02%

QLEPSO 76.343 13.649 89.992 8.35%§

One of the primary goals of this paper is to ensure that the method developed here can achieve equivalent performance

as traditional preliminary mission design methods with a much lower computational budget. A single QLEPSO run takes

less than an hour to complete on a desktop computer with 4 cores running at 3.40GHz. On the other hand, the solutions

generated by Martin et al. [12, 45] report a runtime on "order of days on a desktop computer". Though runtimes are

not reported in the other works referenced in Table 9, it is expected to be on the order of tens of hours for every final

solution generated ¶. Also noteworthy is that using gradient-based methods usually involves generating and providing

successive initial guesses through homotopy, like the process implemented in [12] and [44]. However, the comparison

in Table 9 demonstrates that reasonable approximations to optimal trajectories can be obtained by using QLEPSO.

Local Search: Minimum-Fuel Solutions

In addition to applying gradient-based methods to finding minimum-time solutions for direct Earth-to-halo transfer,

Zhang et al. [44] also continue the process to obtain minimum-fuel solutions for different thrust levels with specified

TOFs. An attempt was made to design similar transfers using the method developed in this paper, by fixing τm = 0

within the solution process. This implies that the transfer initiates delivery of the low-thrust spacecraft directly to the
§As a clarifying note, this value is higher than the result in Table 6 due to the high inclination of the parking orbit used here.
¶estimated based on computational time of 28h reported in [9] for a comparable problem
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halo orbit, without leveraging its associated manifold. The selected EML1 halo orbit (Az = 8000 km) lies entirely within

the lunar SOI, which means that QLEPSO may provide less effective solutions, though they will be fully feasible within

the framework. These results are provided in Table 10, where the time-of-flight specified is obtained from [44] and

serves as the constraint for our method. Specifically, this differs from the QLEPSO results in Table 9, where only

transfers with 90 days flight time were calculated.

Table 10 Comparison with minimum-fuel solutions from Zhang et al. [44]

Thrust level Total TOF Mass fraction consumed Mass fraction consumed
in reference solutions [44] in QLEPSO solutions

0.6 N 140.2678 days 8.50% 8.13%
1 N 84.3688 days 8.69% 8.33%
2 N 37.8965 days 8.54% 8.69%
3 N 27.4773 days 9.12% 8.35%
5 N 16.8524 days 9.47% 8.95%

The propellant consumed in direct Earth-to-halo low-thrust trajectories designed using the QLEPSO method is lower

than those found in [44]. This is due to the fact that the authors of the referenced work fixed the initial and final points of

the transfer, i.e., the transfer commences at a GTO whose orientation (in terms of argument of periapse ω and longitude

of ascending node Ω) is completely fixed, and ends at the point on the halo orbit where it achieves maximum separation

from the Earth-moon plane. This is equivalent to fixing τh and τm in our formulation of the problem, as well as aiming

for all orbital elements while designing the low-thrust orbit raising spiral. However, our Q-law implementation aims to

definitively match only the semi-major axis, eccentricity and the inclination of the Earth parking orbit since the other

elements can be targeted through the launch itself. Thus, the freedom of not targeting other orbital elements allows our

method to produce better results. Regardless of matching the exact boundary conditions, the QLEPSO solution provides

a close approximation of the transfer cost. As a point of note, the QLEPSO failed to converge when constraining the

total TOF to the values reported in [44] for higher values of thrust. Acceptable solutions were found in these higher

thrust cases when the time of flight constraint was relaxed.

Global Search Solutions

The hybrid optimal control framework developed by Shah et al. [46] provides a fully automated tool, now named

DyLAN, for design of three-body transfer problems. It consists of a nested loop architecture to conduct global exploration

of the search space associated with the problem. The outer loop uses a multi-objective genetic algorithm to pick the

design variables that define the problem structure. This is complemented by the inner loop that solves the optimal control

problem defined by the outer loop. The problem is defined to begin at the Earth parking orbit and thrust tangentially

until a certain Jacobi energy is achieved. The spacecraft is then allowed one coast arc as well as another thrust arc to
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reach the manifold patch point. The thrust arc beyond the main orbit-raising spiral is solved within the inner loop using

the finite burn low thrust (FBLT) transcription. In this way, the boundary conditions of the optimal control problem

supplied to the inner loop are decided by the outer loop. This hybrid optimal control framework is thus capable of

generating the Pareto-front of time-of-flight vs. propellant mass consumed.

Fig. 4 Comparison with DyLAN solutions from [30]

The final comparison of the QLEPSO method is conducted against the results obtained by the DyLAN framework in

[30]. The cost of these transfers, designed between a GTO and an EML1 halo orbit of Az = 5000 km, is charted in Fig.

4. These reference trajectories correspond to a thrust acceleration of 1×10−3 m/s2. As before, due to the difference in

direction of trajectory propagation, this thrust acceleration is the final value in the case of QLEPSO, and the initial

value for DyLAN. The Pareto-front of DyLAN solutions in Fig. 4 was produced by using multi-objective optimization

techniques. The QLEPSO data points, however, were obtained one-by-one by setting the TOF constraint to match the

referenced results. The important distinction from the previous case comparisons is that only the time to reach the stable

manifold is counted for flight time calculation. This is done in order to match the settings of the reported results in [30]

and is achieved by excluding the |τm | term from the TOF constraint in Equation 19.

As explained earlier, the DyLAN solutions consist of a continuous tangential thrust arc starting at the parking orbit,

followed by a coast arc and another thrust arc as decided by the outer loop solver. At the end of these phases, the

spacecraft is delivered to the manifold. Thus the FBLT transcription is used only to optimize the second thrust arc.

In Fig. 4, the same trend of reallocation of coast arcs by QLEPSO is observed – the coast arc is removed from the

pre-FBLT section and reassigned to the orbit-raising phase. Due to this, all QLEPSO-designed transfers consume less

fuel than the DyLAN solutions.
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VI. Conclusions
This paper describes a design method for quantifying low-energy, low-thrust transfers in a three-body system in a

computationally efficient manner. It uses the previously proposed Q-law, a feedback control law based on Lyapunov

control theory, to design the low-thrust trajectory, combining it with low-energy dynamical systems theory. This

low-energy low-thrust (LELT) trajectory design problem is parametrized by the initial parking orbit, Q-law weights

and effectivity cutoff, and the manifold patch point. These decision variables are optimized using a particle swarm

algorithm. A simple and effective strategy, comprising of marking infeasible solutions with fictitious high fitness values,

is implemented here to deal with the time-of-flight constraint. The complete technique is demonstrated on the design of

a transfer that starts at an Earth parking orbit and uses low-thrust propulsion to transport the spacecraft to the stable

manifold of an Earth-moon L1 halo orbit within a specified flight time. The optimal solutions thus obtained show

that the insertion on the invariant manifold occurs at the closest allowed points to the halo orbit in order to spread the

coasting time all along the low-thrust section of the trajectory. The parking orbit, constrained by the ∆v to transfer from

LEO to GTO, was also chosen to have the highest achievable apogee, with minimal inclination change.

Close agreement between the results obtained here and the optimal solutions obtained through gradient-based

deterministic methods serves the purpose of validating and assessing the applicability of the developed preliminary

Q-law LELT trajectory design with PSO (or simply QLEPSO) method. In addition to its accuracy, QLEPSO also

provides significant savings in computational effort due to the use of the non-iterative Q-law for low-thrust arc design. By

itself, the estimates provided by this method for percentage mass propellant consumed are suitable for large-scale trade

space studies or logistics planning. This method is also well suited for use in the preparatory stages for gradient-based

solving techniques (i.e., for seeding initial guesses); the use of QLEPSO for achieving higher-fidelity solutions in this

manner is an open avenue of future work.
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Appendix: Physical Constants

Table 11 Values of physical constants used in current study

Parameter Value

Mass parameter µ 0.012150585609624

Standard gravity g 9.809 m/sec2

Distance unit (DU) in rotating frame 384400 km

(also a%)

Time unit (TU) in rotating frame 375197.691775973 sec

Lunar mean motion n% 2.64907088×10−6 rad/sec
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