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Abstract

This paper introduces the notion of quantitative resilience

of a control system. Following prior work, we study linear

driftless systems enduring a loss of control authority over

some of their actuators. Such a malfunction results in

actuators producing possibly undesirable inputs over which

the controller has real-time readings but no control. By

definition, a system is resilient if it can still reach a target

after a partial loss of control authority. However, after such a

malfunction, a resilient system might be significantly slower

to reach a target compared to its initial capabilities. We

quantify this loss of performance through the new concept

of quantitative resilience. We define such a metric as the

maximal ratio of the minimal times required to reach any

target for the initial and malfunctioning systems. Näıve

computation of quantitative resilience directly from the

definition is a complex task as it requires solving four

nested, possibly nonlinear, optimization problems. The

main technical contribution of this work is to provide an

efficient method to compute quantitative resilience. Relying

on control theory and on two novel geometric results we

reduce the computation of quantitative resilience to a single

linear optimization problem. We demonstrate our method

on an opinion dynamics scenario.

1 Introduction

When failure is not an option, critical systems are
built with sufficient actuator redundancy [20] and with
fault-tolerant controllers [24]. These systems rely on
different methods like adaptive control [22, 23] or active
disturbance rejection [25] in order to compensate for
actuator failures. The study of this type of malfunction
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typically considers either actuators locking in place [22],
actuators losing effectiveness but remaining controllable
[23, 24], or a combination of both [25]. However,
when actuators can be subject to damage or hostile
takeover, the malfunction may result in some actuators
producing undesirable inputs over which the controller
has real-time readings but no control. This type of
malfunction has been discussed in [4] under the name of
loss of control authority over actuators and encompasses
scenarios where actuators are under attack [8].

In the setting of loss of control authority, undesir-
able inputs are observable and can have a magnitude
similar to the controlled inputs, while in classical ro-
bust control the undesirable inputs are not observable
and have a small magnitude compared to the actuators’
inputs [12]. The results of [3] showed that a controller
having access to the undesirable inputs is considerably
more effective than a robust controller.

After a partial loss of control authority over actu-
ators, a target is said to be resiliently reachable if for
any undesirable inputs produced by the malfunctioning
actuators there exists a control driving the state to the
target [4]. However, after the loss of control the mal-
functioning system might need considerably more time
to reach its target compared to the initial system. In
this work we thus introduce the concept of quantitative
resilience for control systems in order to measure the
delays caused by the loss of control authority over ac-
tuators. While concepts of quantitative resilience have
been previously developed for water infrastructure sys-
tems [17] or for nuclear power plants [11], such concepts
only work for their specific application.

In this work we formulate quantitative resilience as
the maximal ratio of the minimal times required to reach
any target for the initial and malfunctioning systems.
This formulation leads to a nonlinear minimax opti-
mization problem with an infinite number of equality
constraints. Because of the complexity of this problem,
a straightforward attempt at a solution is not feasible.
While for linear minimax problems with a finite number
of constraints the optimum is reached on the boundary
of the constraint set [16], such a general result does not
hold in the setting of semi-infinite programming [10]
where our problem belongs. However, the theorems of
[14, 15] stating the existence of time-optimal controls



combined with the specific geometry of our problem, al-
low us to derive two bang-bang results concerning some
nonlinear optimization problems. Then, the quantita-
tive resilience of a driftless system is reduced to single
linear optimization problem.

As a first step toward the study of quantitative
resilience for linear systems we restrict this work to
driftless systems. Indeed, we will see that even with
these simple dynamics the theory is already sufficiently
rich. Furthermore, one can find an abundance of
driftless systems in robotics [18].

The contributions of this paper are fourfold. First,
we introduce the concept of quantitative resilience for
systems enduring a loss of control authority over some
of their actuators. Secondly, to solve our central prob-
lem, we determine a simple analytical solution to a re-
lated nonlinear optimization problem with applications
not restricted only to control theory. Thirdly, we pro-
vide an efficient method to compute the quantitative
resilience of driftless systems by simplifying a nonlinear
problem of four nested optimizations into a single linear
optimization problem. Finally, based on quantitative re-
silience and controllability we establish a necessary and
sufficient condition for a system to be resilient.

The remainder of the paper is organized as fol-
lows. Section 2 introduces preliminary results concern-
ing resilient systems and defines quantitative resilience.
Section 3 establishes two optimization results that will
prove crucial for the computation of quantitative re-
silience. To evaluate this metric we need the minimal
time for the system to reach a target before and after
the loss of control authority. We calculate this mini-
mal time for the initial system in Section 4 and for the
malfunctioning system in Section 5. Section 6 is the
pinnacle of this work as we design an efficient method
to compute quantitative resilience and assess whether a
system is resilient. Finally, in Section 7 our theory is
applied to an opinion dynamics scenario.

Notation: The interior of a set X is denoted X◦ and
its convex hull is co(X). Set X is symmetric if x ∈ X
implies −x ∈ X. Let R+ := [0,∞) and we use the
subscript ∗ to exclude zero, for instance R+

∗ := (0,∞).
In Rn we denote the Euclidean norm with ‖ · ‖ and the
unit sphere with S := {x ∈ Rn : ‖x‖ = 1}. The infinity-
norm of x ∈ Rn is ‖x‖∞ := max{|xi| : 1 ≤ i ≤ n}. For
integrable piecewise continuous functions f : R+ → Rn,
the L2-norm is defined as ‖f‖2L2

:=
∫
t≥ 0
‖f(t)‖2 dt, and

the L∞-norm is ‖f‖L∞ := sup
{
‖f(t)‖∞ : t ≥ 0

}
.

2 Preliminaries and Problem Statement

We consider driftless systems governed by the dynamics

(2.1) ẋ(t) = B̄ū(t), x(0) = x0 ∈ Rn, ū ∈ Ū ,

where B̄ ∈ Rn×(m+p). Even though such systems
are seemingly simple, they are used in a variety of
applications [18, 19], and we will show that they yield
a rich theory of quantitative resilience. The set of
allowable controls is

(2.2) Ū :=
{
ū : R+ → Rm+p : ‖u‖L∞ ≤ umax

}
,

with umax > 0. After a malfunction, the system loses
control authority over p of its m+ p actuators. Because
of the malfunction, the initial control input ū is split into
the remaining controlled inputs u and the undesirable
inputs w. Without loss of generality we consider the
columns C representing the malfunctioning actuators
to be at the end of B̄. We split the control matrix
accordingly: B̄ =

[
B C

]
. Then, the dynamics become

ẋ(t) = Bu(t) + Cw(t), x(0) = x0 ∈ Rn,(2.3)

with u ∈ U , w ∈W , and

(2.4)
U :=

{
u : R+ → Rm : ‖u‖L∞ ≤ umax

}
W :=

{
w : R+ → Rp : ‖w‖L∞ ≤ umax

}
.

We will use the concept of controllability of [14].

Definition 2.1. A system following (2.1) is control-
lable if for all target xgoal ∈ Rn there exists a control
ū ∈ Ū and a time T such that x(T ) = xgoal.

We recall here the definition of the resilience of a system
introduced in [3].

Definition 2.2. A system following (2.1) is resilient
to the loss of p of its actuators corresponding to the
matrix C as above if for all undesirable inputs w ∈ W
and all target xgoal ∈ Rn there exists a control u ∈ U
and a time T such that the state of the system (2.3)
reaches the target at time T , i.e., x(T ) = xgoal.

In previous work [3, 4] the input magnitude was
constrained with L2 bounds, while here we use instead
L∞ bounds for application purposes. Thus, most of the
resilience conditions of [3, 4] do not apply here. We
establish a simple necessary condition for our setting.

Proposition 2.1. If the system (2.1) is resilient to the
loss of p actuators, then the system ẋ(t) = Bu(t) is
controllable.

The proof of this result can be found in the ex-
tended version [5] of this paper. While a resilient sys-
tem is capable of reaching any target after losing con-
trol authority over p of its actuators, the time for the
malfunctioning system to reach a target might be con-
siderably larger than the time needed for the initial sys-
tem to reach the same target. We introduce these two
times for the target xgoal ∈ Rn and the target distance
d := xgoal − x0 ∈ Rn.



Definition 2.3. The nominal reach time T ∗N is the
shortest time required to reach the target for the initial
system following (2.1):

(2.5) T ∗N (d) := inf
ū∈ Ū

{
T ≥ 0 :

∫ T

0

B̄ū(t) dt = d
}
.

Definition 2.4. The malfunctioning reach time T ∗M is
the shortest time required to reach the target for the mal-
functioning system following (2.3) when the undesirable
input is chosen to make that time the longest:
(2.6)

T ∗M (d) := sup
w∈W

{
inf
u∈U

{
T ≥ 0 :

∫ T

0

Bu(t)+Cw(t) dt = d
}}

.

By definition, if the system is controllable, then T ∗N (d)
is finite for all d ∈ Rn, and if it is resilient, then T ∗M (d)
is finite.

Definition 2.5. The ratio of reach times in the direc-
tion d ∈ Rn is t(d) :=

T∗M (d)
T∗N (d) .

After the loss of control, the malfunctioning system can
take up to t(d) times longer than the initial system
to reach the target d + x0. Since the performance is
degraded by the undesirable inputs, t(d) ≥ 1. We take
the convention that t(d) = +∞ whenever T ∗M (d) = +∞,
regardless of the value of T ∗N (d).

Remark 2.1. The case T ∗N (d) = T ∗M (d) = 0 can only
happen when d = 0, because x(0) = x0 = xgoal. We

take the convention that
T∗N (0)
T∗M (0) = 1.

To measure how a system endures a loss of control
over its actuators we define its quantitative resilience.

Definition 2.6. The quantitative resilience rq of a
system following (2.3) is the inverse of the maximal
ratio of reach times, i.e.,

(2.7) rq :=
1

sup
d∈Rn

t(d)
= inf
d∈Rn

T ∗N (d)

T ∗M (d)
.

Quantitative resilience can be defined in exactly the
same way for general control systems, but we focus on
linear driftless systems in this work. For a resilient
system, rq ∈ (0, 1]. The closer rq is to 1, the smaller
is the loss of performance caused by the malfunction.

Quantitative resilience rq depends on matrices B
and C, i.e., on the actuators that are producing unde-
sirable inputs. For a system following (2.1), one can
calculate rq for all possible malfunctions. Computing
rq directly from (2.5)-(2.7) requires solving four nested
optimization problems, with three constraint sets being
infinite-dimensional function spaces. A brute force ap-
proach to this problem is doomed to fail. Thus, we focus
on the following problem.

Problem 1. How to compute rq efficiently?

3 Optimization on Polytopes

In this section, we introduce two novel optimization
results on polytopes that will be needed to compute
quantitative resilience. To save space, full proofs of
these results can be found in the extended paper [5].

Definition 3.1. A polytope in Rn is a compact inter-
section of finitely many half-spaces.

Definition 3.2. A vertex of a set X ⊂ Rn is a point
x ∈ X such that if there are x1 ∈ X and x2 ∈ X with
x ∈ [x1, x2], then x = x1 = x2.

With these definitions, polytopes are convex, and a ver-
tex of a polytope corresponds to the usual understand-
ing of a vertex of a polytope.

Theorem 3.1. Let d ∈ Rn∗ , X and Y two polytopes
in Rn with −X ⊂ Y . Then, there exists v a vertex
of X such that ‖v + y∗(v)‖ = min

x∈X
‖x + y∗(x)‖, with

y∗(x) := arg max
y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}
.

Theorem 3.1 will help us calculate the malfunction-
ing reach time T ∗M of resilient systems, while the follow-
ing result will simplify the calculation of rq.

Theorem 3.2. If Xand Y are two symmetric polytopes
in Rn with X ⊂ Y ◦, dimX = 1, ∂X = {x,−x} and
dimY = n, then max

d∈ S
rX,Y (d) = rX,Y (x), with

(3.8)

rX,Y (d) :=

max
x∈X, y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}
min
x∈X

{
max
y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}} .
Proof. In [5], we prove the existence of the max and min
in (3.8) with the compactness of X and Y . Geometric
arguments then show that x maximizes rX,Y .

We now return to the discussion of resilient systems.

4 Dynamics of the Initial System

We start with the initial system of dynamics (2.1)
and aim to calculate the nominal reach time T ∗N . We
introduce Ūc :=

{
ū ∈ Rm+p : ‖ū‖∞ ≤ umax

}
, the set of

constant inputs.

Proposition 4.1. For a controllable system (2.1) and
d = xgoal − x0 ∈ Rn, the infimum T ∗N (d) of (2.5) is
achieved with a constant control input ū∗ ∈ Ūc.

Proof. Dynamics (2.1) are linear in x and ū. Set Ū
defined in (2.2) is convex and compact. The system is



controllable, so xgoal is reachable. The assumptions of
Theorem 4.3 of [14] are satisfied, leading to the existence
of a time optimal control û ∈ Ū . Thus, the infimum in

(2.5) is a minimum and
∫ T∗N

0
B̄û(t) dt = d. If d = 0,

then, according to Remark 2.1, T ∗N = 0 and we take
ū∗ = 0 ∈ Ūc. Otherwise, T ∗N > 0, so we can define the

vector ū∗ := 1
T∗N

∫ T∗N
0

û(t) dt ∈ Rm+p. Since û ∈ Ū we

have ū∗ ∈ Ūc and
∫ T∗N

0
B̄ū∗ dt = B̄ū∗T ∗N = d.

Because of Proposition 4.1, (2.5) simplifies to

(4.9) T ∗N (d) = min
ū∈ Ūc

{
T ≥ 0 : B̄ū T = d

}
.

The multiplication of the variables ū and T prevents the
use of linear solvers for (4.9). Instead, we will consider

(4.10) T ∗N (d) =

(
max
ū∈ Ūc

{
λ : B̄ū = λd

})−1

,

after using the transformation λ = 1
T in (4.9). Problem

(4.10) is linear in ū so the optimal control input ū∗

belongs to the boundary of the constraint set [16] for
d 6= 0. Thus, ‖ū∗‖∞ = umax.

Proposition 4.2. The nominal reach time T ∗N is ab-
solutely homogeneous, i.e., T ∗N (λd) = |λ| T ∗N (d) for
d ∈ Rn, λ ∈ R.

Proof. For λ = 0, we have T ∗N (0) = 0. Let λ > 0
and d ∈ Rn. From (4.9), there is ūd ∈ Ūc so that
B̄ūdT

∗
N (d) = d, and B̄ ūd λT

∗
N (d) = λd. The optimality

of T ∗N (λd) to reach λd leads to T ∗N (λd) ≤ λT ∗N (d).
There exists ūλd ∈ Ūc such that B̄ūλdT

∗
N (λd) = λd.

Then B̄ ūλd
T∗N (λd)

λ = d. The optimality of T ∗N (d) to

reach d leads to T ∗N (d) ≤ T∗N (λd)
λ , so λT ∗N (d) = T ∗N (λd).

For λ < 0, the proof is similar to the above, and for all
details see [5].

We can now tackle the dynamics of the malfunction-
ing system after a loss of control authority over some of
its actuators.

5 Dynamics of the Malfunctioning System

We study the system of dynamics (2.3) to compute
the malfunctioning reach time T ∗M . We define the
constant input sets Uc :=

{
u ∈ Rm : ‖u‖∞ ≤ umax

}
,

Wc :=
{
w ∈ Rp : ‖w‖∞ ≤ umax

}
, and Vc the set of

vertices of Wc.

Proposition 5.1. For a resilient system, d ∈ Rn∗ and
w ∈ W , the infimum TM (w, d) of (2.6) defined as

TM (w, d) = inf
u∈U

{
T ≥ 0 :

∫ T
0
Bu(t) + Cw(t) dt = d

}
,

is achieved with a constant control input u∗d(w) ∈ Uc.

The proof of Proposition 5.1 is similar to that of
Proposition 4.1, and can be found in [5] to save space.
We can now work on the supremum of (2.6).

Proposition 5.2. For a resilient system and d ∈ Rn∗ ,
the supremum T ∗M (d) of (2.6) is achieved with a con-
stant undesirable input w∗ ∈Wc.

Proof. Let w ∈ W , d ∈ Rn∗ , wc :=
∫ TM (w,d)

0
w(t)dt
TM (w,d) ,

with TM (w, d) from Proposition 5.1. Then, wc ∈ Wc

and Bu∗d(w)T +
∫ T

0
Cw(t) dt = d =

(
Bu∗d(w) + Cwc

)
T .

Thus, the supremum of (2.6) can be taken on Wc.
We define the function ϕ : Wc → Rn as

(5.11) ϕ(wc) := Bu∗d(wc) + Cwc for wc ∈Wc.

When applying wc and u∗d(wc) the dynamics become
ẋ = ϕ(wc). We prove in [5] that ϕ is continuous in
wc. Set Wc is compact, t0 = 0 and x0 ∈ Rn are fixed.
Then, Theorem 1 of [15] states that the attainable set

AWc
:=
{

(x1, T ) : for wc ∈ Wc,
∫ T

0
ϕ(wc) dt = x1 − x0

}
is compact. Since T ∗M (d) = sup

{
T : (xgoal, T ) ∈ AWc

}
,

the supremum of (2.6) is achieved on Wc.

Following Propositions 5.1 and 5.2, (2.6) becomes
(5.12)

T ∗M (d) = max
wc ∈Wc

{
min
uc ∈Uc

{
T ≥ 0 :

(
Buc + Cwc

)
T = d

}}
.

The simplifications achieved so far were based on exis-
tence theorems from [14, 15] upon which the bang-bang
principle relies. The logical next step is to show that
the maximum of (5.12) is achieved on a vertex of Wc.
However, most of the work on the bang-bang principle
considers systems with a linear dependency on the input
[13, 14, 21], while ϕ introduced in (5.11) is not linear.

The work [15] considers a nonlinear ϕ, yet the
discussion on bang-bang inputs would require us to show
that co(ϕ(Wc)) = co(ϕ(Vc)). This task is not trivial
as it amounts to proving that inputs in Vc can do as
much as inputs in Wc, i.e., we would need to prove the
bang-bang principle. Two more works [1, 9] study bang-
bang properties of systems with nonlinear dependency
on the input. However, both of them require conditions
that are not met in our case. The results of [1] require
ẋ = Cw to be controllable, while [9] needs TM (w, d) to
be concave in w. Thus, even if bang-bang theory seems
like a natural approach, we had to establish our own
optimization result, namely Theorem 3.1, in order to
show that the maximum of (5.12) is achieved on Vc.

Proposition 5.3. For a resilient system and d ∈ Rn∗ ,
the maximum of (5.12) is achieved with a constant input
w∗ ∈ Vc, i.e., its components are ±umax.



Proof. We first introduce the two polytopes of Rn,
X :=

{
Cwc : wc ∈ Wc

}
and Y :=

{
Buc : uc ∈ Uc

}
.

Then, using λ = 1
T in (5.12) we have

1

T ∗M (d)
= min
x∈X

{
max
y∈Y

{
λ ≥ 0 : x+ y = λd

}}
.

Since λ ≥ 0, we can write λ = |λ| = ‖λd‖
‖d‖ = ‖x+y‖

‖d‖ .

Then, our problem of interest becomes

(5.13)
1

‖d‖
min
x∈X

{
max
y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}}
.

To apply Theorem 3.1, we need to show that −X ⊂ Y .
Since the system is resilient, for all wc ∈ Wc and all
d0 ∈ Rn there exists uc ∈ Uc and T ≥ 0 such that
(Buc + Cwc)T = d0. Then, for x = Cwc ∈ X, x 6= 0
and d0 = −x there exists y ∈ Y and T > 0 such that
(x+ y)T = −x. Then, y = −λx with λ := 1 + 1/T > 1.
Since 0 ∈ Y and −λx ∈ Y then −x ∈ Y by convexity of
Y . Thus, −X ⊂ Y .

We can now apply Theorem 3.1 and conclude that
the minimum x∗ of (5.13) must be realized on a vertex
of X. In [5] we prove that there exists v∗ ∈ Vc such that
x∗ = Cv∗.

We have reduced the constraint set of (2.6) from
an infinite-dimensional set W to a finite set Vc of car-
dinality 2p, with p being the number of malfunctioning
actuators. Then,
(5.14)

T ∗M (d) = max
wc ∈Vc

{
min
uc ∈Uc

{
T ≥ 0 :

(
Buc + Cwc

)
T = d

}}
.

Similarly to the nominal reach time, T ∗M is also
linear in the target distance.

Proposition 5.4. The malfunctioning reach time T ∗M
is absolutely homogeneous, i.e., T ∗M (λd) = |λ| T ∗M (d) for
d ∈ Rn, λ ∈ R.

Proof. Because of the minimax structure of (5.14),
scaling like in the proof of Proposition 4.2 is not
sufficient for T ∗M (d). The complete proof is more
complex as it relies on the continuity of T ∗M and can
be found in [5].

We can now combine the initial and malfunctioning
dynamics.

6 Quantitative Resilience

Quantitative resilience is defined in (2.7) as the infimum
of T ∗N (d)/T ∗M (d) over d ∈ Rn. Using Propositions 4.2
and 5.4 we reduce this constraint to d ∈ S. For the
loss of control over a single actuator we can determine

the optimal d ∈ S by noting that the effects of the
undesirable inputs are the strongest along the direction
described by the malfunctioning actuator.

Theorem 6.1. For a resilient system following (2.3)
with C a single column matrix, max

d∈ S
t(d) = t(C).

Proof. Fix d ∈ S. As in (4.10), we rewrite the
malfunctioning reach time

T ∗M (d) = max
wc ∈Wc

{
min
uc ∈Uc

{
T : (Buc + Cwc)T = d

}}
=

1

min
wc ∈Wc

{
max
uc ∈Uc

{
λ : Buc + Cwc = λd

}} .
Let Y :=

{
Buc : uc ∈ Uc

}
and X :=

{
Cwc : wc ∈ Wc

}
.

Since λ ≥ 0 and ‖d‖ = 1, λ = ‖λd‖ = ‖y + x‖. These
simplifications lead to

(6.15) T ∗M (d) =
1

min
x∈X

{
max
y∈Y

{
‖y + x‖ : y + x ∈ R+d

}} .
We focus on the nominal reach time and proceed to the
separation of B̄ = [B C] in (4.10):

1

T ∗N (d)
= max
ū∈ Ūc

{
λ : B̄ū = λd

}
= max

uc ∈Uc
wc ∈Wc

{
λ : Buc + Cwc = λd

}
= max

y∈Y
x∈X

{
‖y + x‖ : y + x ∈ R+d

}
.(6.16)

We can now gather (6.15) and (6.16) into

t(d) =
T ∗M (d)

T ∗N (d)
=

max
x∈X, y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}
min
x∈X

{
max
y∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}}
= rX,Y (d),

with rX,Y defined in (3.8). In the proof of Proposi-
tion 5.3 we used that X and Y are polytopes verifying
−X ⊂ Y . Since Uc and Wc are symmetric, so are X
and Y . In [5] we show that the resilience of the system
implies X ⊂ Y ◦ and dimY = n. Because C is a sin-
gle column, dimX = 1 and ∂X = {−Cumax, Cumax}.
We can then apply Theorem 3.2 and obtain max

d∈ S
t(d) =

t(Cumax) = t(C) because umax ∈ R and t is invariant
to scaling according to Propositions 4.2 and 5.4.

Thus, to calculate rq we only need T ∗N (C) and
T ∗M (C). The computation load can be even further
reduced with the following result.



Theorem 6.2. For a resilient system losing control
over a single nonzero column C, rq = rmax, where
(6.17)

rmax :=
λ∗ − umax
λ∗ + umax

and λ∗ := max
υ ∈Uc

{
λ : Bυ = λC

}
.

Proof. Let ū ∈ Ūc, u ∈ Uc and w ∈ Vc ⊂ R be
the arguments of the solutions of (4.9) and (5.14) for
d = C 6= 0. We split ū = (uB , uC) with uB ∈ Uc and
uC ∈Wc ⊂ R. Then,

B̄ū T ∗N (C) =
(
BuB + CuC

)
T ∗N (C) = C,(6.18) (

Bu+ Cw
)
T ∗M (C) = C.(6.19)

Since C is a single column, Cw and CuC are collinear
with C. Then, BuB and Bu are also collinear with C, so
there exists λM ∈ R and λN ∈ R such that BuB = λNC
and Bu = λMC. Then, (6.18) and (6.19) become scalar
equations

λN + uC = 1/T ∗N (C),(6.20)

λM + w = 1/T ∗M (C).(6.21)

Note that λM and w are independent. Since u ∈ Uc
must maximize the right-hand side of (6.21), we have
λM = max

u∈Uc

{
λ : Bu = λC

}
whatever the value of w.

Similarly, λN and uC are independent, which leads to
λN = λM = λ∗ as defined in (6.17).

From Proposition 5.3, w = ±umax and is chosen to
minimize the right-hand side of (6.21), so w = −umax.
On the other hand, uC must maximize 1/T ∗N (C) so
uC = umax. Then, (6.20) and (6.21) become

λ∗ + umax = 1/T ∗N (C), and λ∗ − umax = 1/T ∗M (C).

By Theorem 6.1, rq =
T∗N (C)
T∗M (C) = λ∗−umax

λ∗+umax
= rmax.

We introduced quantitative resilience as the solu-
tion of four nonlinear nested optimization problems and
now we reduced rq to the solution of a single linear op-
timization problem. We have completed Problem 1.

So far, all our results need the system to be resilient.
However, the resilience criteria of [3] cannot be applied
here due to a difference in the set of allowable controls.
We thus establish a new resilience condition proved in
the extended version [5] of this paper.

Proposition 6.1. A system following (2.1) is resilient
to the loss of control over a column C if and only if it
is controllable and T ∗M (C) is finite.

Controllability guarantees that every state is reach-
able and T ∗M (C) being finite ensures that the reacha-
bility is preserved despite the worst undesirable inputs.
However, following Theorem 6.2 we do not need to com-
pute T ∗M (C) to access rq, so we derive in [5] an equiva-
lent resilience condition involving directly rmax.

Corollary 6.1. A system following (2.1) is resilient
to the loss of control over a nonzero column C if and
only if it is controllable and rmax ∈ (0, 1].

We now have all the tools to assess the quantitative
resilience of a driftless system. If B̄ is not full rank,
the system following (2.1) is not controllable and there
is no need to go further. Otherwise, we compute rmax
and using Corollary 6.1 we assess whether the system
is resilient. If it is, Theorem 6.2 states that rq = rmax,
otherwise rq = 0. We will now apply this method to an
opinion dynamics scenario.

7 Numerical Example: Opinion Dynamics

Opinion dynamics study how a group of agents shape
their opinions x in different scenarios, for instance
facing outside opinion sources u. Such a situation is
illustrated in [19] with a 1D discrete time Deffuant
model x(t + 1) = x(t) + µε

(
u(t) − x(t)

)
, where µ is

a convergence parameter and ε encodes the strength
of u. For our purpose, we will consider u as an input
to the system and generalize to a multi-inputs, multi-
states continuous time model: ẋ(t) = Ax(t) + B̄ū(t).
We assume that agents have no direct interactions with
each other, leading to the driftless model ẋ(t) = B̄ū(t).
Similar models are used in consensus dynamics [6] where
B̄ = I and controls are state feedback ū(t) = −Kx(t).

We refer to the outside sources as channels. An
example is a consumer of multiple media sources with
different levels of trust towards different media. The
agents opinions are solely determined by the controller
of the channels.

The controller is using its channels to steer the
opinion of each agent towards a target set. For instance,
the controller could be a worldwide media conglomerate
such as the News Corporation [2]. The COVID-19
pandemic has minimized direct interactions between
people, hence making our setting more realistic. An
extreme variant of this scenario is illustrated by the
episode ”Fifteen Million Merits” of the Black Mirror
series [7].

A perturbing event, e.g., loss of influence, foreign
acquisition of a news channel, or a new board of direc-
tors, causes one of the channels to become uncontrol-
lable and to produce undesirable inputs. The controller
has still access to this channel and is informed in real
time of its content, while being unable to modify it.

We consider n = 3 agents having initially a neutral
opinion: x0 = (0, 0, 0). Then, the target is d =
xgoal ∈ R3. For instance, d = (1, 1, 1) is a consensus
target, while d = (−1, −1, 1) is a polarization target.
The components of B̄, denoted by B̄i,j ∈ [−1, 1] reflect
the influence of channel j over agent i. We consider 6



different channels:

B̄ =

0.8 −0.9 0.4 −0.4 −0.7 0
1 −1 0.3 0.2 0.7 −0.1

0.9 −0.8 −0.4 −0.4 0.7 0.1

 .
Given the elements of B̄, the agents strongly trust chan-
nel 1 but not channel 2, they have diverging moderate
opinions on channels 3 and 4, strongly diverging trust of
channel 5, while they are barely influenced by channel
6. We compute rmax for the loss of control over each
single channel:

rmax =
[
0.20 0.18 0.15 0.19 −0.22 0.75

]
.

Since B̄ is full rank and only rmax(5) /∈ (0, 1], according
to Corollary 6.1, the system is resilient to the loss of
control over any single channel except channel 5. Using
Theorem 6.2, for channel 5 we have rq(5) = 0, while
rq(i) = rmax(i) for the other channels i. Because none
of the agents are significantly influenced by channel 6,
the quantitative resilience to its loss is the greatest.

The inverse of rq describes the factor by which the
time to reach an opinion state may increase after a
malfunction:

(7.22)
1

rq
=
[
4.9 5.5 6.5 5.4 ∞ 1.3

]
.

From Theorem 6.1, we know that 1
rq(j) = t(B̄j), which

is the ratio of reach times in the direction B̄j , the jth

column of B̄. Thus, if xgoal = B̄3 = (0.4, 0.3, −0.4),
then after the loss of control over channel 3, there exists
an undesirable input causing an increase of the time to
reach this target by a factor 6.5. On the other hand,
the loss of control over channel 6 has a much smaller
impact on the time to reach any target.

We now choose the target xgoal = d = (1, 1, 1)
and compare how the loss of each channel affects the
delay to reach this target. Intuitively, since xgoal is
a consensus target, losing control over the channel 1
or 2 will have a considerable impact, while the loss of
the other (channels except 5) should not be significant.
Indeed, when calculating t(d) for the loss of each channel
we obtain

t(d) =
[
4.8 5.4 1.6 1.6 ∞ 1.0

]
,

which confirms our intuition.
If the controller has polarization objectives, for

instance d = (−1, −1, 1), then losing control of channel
3, 4 or 5 should be problematic, while the others should
have a smaller impact. Indeed,

t(d) =
[
1.7 1.7 6.5 5.4 ∞ 1.3

]
,

so the loss of channel 5 renders the polarization target
unreachable, and loss of channel 3 or 4 causes a large
delay.

To illustrate the proof of Theorem 3.2 we compute
the ratio t(d) = rX,Y (d) while completing a revolution
with d ∈ S ⊂ R3 for the loss of channel 1. The red
spikes show when d is collinear with C. As can be seen
on Figure 1, the spikes coincide with the maximum of
t(d), located at 4.9 as announced in (7.22). We also note
that t = rX,Y is an even function of d as proven in [5].

Figure 1: Ratio of reach times t(d) for the loss of control
over channel 1.

8 Conclusion and Future Work

To quantify the drop in performance caused by the loss
of control authority over actuators, this paper intro-
duced the notion of quantitative resilience for control
systems. Relying on bang-bang control theory and on
two novel optimization results, we transformed a nonlin-
ear problem consisting of four nested optimizations into
a single linear problem. This simplification leads to a
computationally efficient algorithm to verify resilience
and calculate the quantitative resilience of driftless sys-
tems.

There are three promising avenues of future work.
To study systems like drones, whose inputs are only
positive propeller velocities, we need to extend our the-
ory to asymmetric input sets. Secondly, we have only
considered driftless systems because of the complex-
ity of the subject. However, future work should be
able to extend the concept of quantitative resilience to
non-driftless linear systems. Finally, noting that Theo-
rems 6.1 and 6.2 only concern the loss of a single actua-
tor, our third direction of work is to extend these results
to the simultaneous loss of multiple actuators.
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