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Abstract

After a loss of control authority over thrusters of the Nauka module, the International
Space Station lost attitude control for 45 minutes with potentially disastrous consequences.
Motivated by this scenario, we investigate the continued capability of control systems to per-
form their task despite partial loss of authority over their actuators. We say that a system
is resilient to such a malfunction if for any undesirable inputs and any target state there
exists an admissible control driving the state to the target. Building on controllability con-
ditions and differential games theory, we establish a necessary and sufficient condition for
the resilience of linear systems. As their task might be time-constrained, ensuring comple-
tion alone is not sufficient. We also want to estimate how much slower the malfunctioning
system is compared to its nominal performance. Relying on Lyapunov theory we derive an-
alytical bounds on the reach times of the nominal and malfunctioning systems in order to
quantify their resilience. We illustrate our work on the ADMIRE fighter jet model and on a
temperature control system.

1 Introduction

After the Nauka module docked to the International Space Station (ISS), a software failure caused
a misfire of the module’s thrusters, leading to a loss of attitude control of the whole station for
45 minutes [7]. Eventually, other thrusters on the ISS were fired to counteract the uncontrolled
and undesirable thrust until the Nauka module ran out of fuel. Motivated by such events, [9]
introduced the notion of a partial loss of control authority over actuators where some of the
actuators of a system start producing uncontrolled and thus possibly undesirable inputs within
their full range of actuation. To identify these faulty actuators, we assume sensors monitor each
actuator in real time [16]. Our first objective is then one of resilient reachability, i.e, verifying
whether for all possible outputs of the malfunctioning actuators, the controlled ones can steer the
system to its target [9]. Our second objective is to estimate the maximal time penalty caused by
such a malfunction.

Classically, changing or unknown dynamics are studied through robust, adaptive, and fault-
tolerant control theories. However, robust control needs the undesirable inputs to be significantly
smaller than the controls [36]. Since the loss of control authority over actuators may produce large
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undesirable inputs, robust control performs poorly [10]. In turn, adaptive control tries to estimate
unknown parameters before they have time to change significantly [5], which may not be possible
for uncontrolled inputs. Such a situation would typically prevent convergence of the estimators and
lead to mediocre adaptive control performance [36]. As for fault-tolerant theory, actuator failure
investigations are usually limited either to actuators “locking in place” and producing constant
inputs [34] or to actuators with reduced effectiveness [4,37]. Since uncontrolled actuators can still
produce a full range of inputs, loss of control authority over actuators is not covered by existing
fault-tolerant theory [4].

On the other hand, loss of control authority falls within the framework of differential games
because the malfunctioning actuators can be modeled by adversaries as in [23,33]. However, these
works do not constitute appropriate starting points for a resilient reachability study due to the
unbounded inputs of [23] and the complexity of the theory of [33].

Concerning our second objective, quantitative resilience was introduced in [13,14] as the max-
imal ratio of the minimal reach times for the nominal and malfunctioning systems. However, the
exact calculation of quantitative resilience for systems with driftless dynamics [11] does not extend
to general linear systems since the minimal reach time in such systems does not have an analytical
expression [6].

The main contributions of this work are fourfold. Firstly, relying on the differential games
theory of Hájek [21] and the controllability conditions of Brammer [15], we establish simple neces-
sary and sufficient conditions to verify the resilient stabilizability of linear systems, i.e., whether
the origin is resiliently reachable from any initial state. Secondly, we extend Hájek’s duality
theorem in order to study the resilient reachability of affine targets. Thirdly, we use zonotopic
underapproximations of reachable sets [2, 19] to determine what states are guaranteed to be re-
siliently reachable. Finally, we employ Lyapunov theory [25] to establish analytical bounds on the
quantitative resilience of linear systems.

The remainder of this work is organized as follows. Section 2 introduces the system dynamics
and the problems of interest. Section 3 provides background results. Section 4 establishes nec-
essary and sufficient conditions for resilient stabilizability of linear systems. Section 5 extends
these conditions to affine targets and describes zonotopic underapproximations of the resiliently
reachable set of linear systems. Section 6 derives analytical bounds on the quantitative resilience
of linear systems. Section 7 illustrates our theory on a fighter jet model and a temperature control
system.

Notation: We denote the integer interval from a to b, inclusive, with [[a, b]]. For a set Λ ⊆ C,
we say that Re(Λ) ≤ 0 (resp. Re(Λ) = 0) if the real part of each λ ∈ Λ verifies Re(λ) ≤ 0

(resp. Re(λ) = 0). The norm of a matrix A is ∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ and the set of its

eigenvalues is λ(A). If A is positive definite, denoted A ≻ 0, then its extremal eigenvalues are

λAmin and λAmax, and A generates a vector norm ∥x∥A :=
√
x⊤Ax. The controllability matrix of

pair (A,B) is C(A,B) =
[
BAB . . . An−1B

]
. The zero matrix of size n × m is denoted by 0n,m,

the identity matrix of size n is In, the vector of ones is 1n, and the vector of zeros except for
a 1 in position i is ei. Set Z is symmetric if −Z = Z, its convex hull is denoted by co(Z), its
interior by int(Z), and its relative interior by relint(Z). The set of time functions taking value
in Z is denoted F(Z) :=

{
f : f(t) ∈ Z for all t ≥ 0

}
. The closed ball of dimension b, radius

r ≥ 0, and center c is denoted Bb(c, r) :=
{
x ∈ Rb : ∥x − c∥ ≤ r

}
. The Minkowski addition

of sets X and Y in Rn is X ⊕ Y :=
{
x + y : x ∈ X , y ∈ Y

}
, and their Minkowski difference is
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X ⊖Y :=
{
z ∈ Rn : {z}⊕Y ⊆ X

}
. The projection map from Rn onto Rr with r ≤ n is denoted by

projr(x1, . . . , xn) := (x1, . . . , xr) ∈ Rr. The operator span(·) maps a set of vectors to their linear
span. The operator ⟨·, ·⟩ denotes the standard scalar product in Rn.

2 Problem Statement

We consider the linear time-invariant system

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, ū(t) ∈ Ū , (1)

with constant matrices A ∈ Rn×n and B̄ ∈ Rn×(m+p). The admissible controls are assumed to be
in Ū := [−1, 1]m+p, in line with previous works [12,17,25].

After a loss of control authority over p of the m+ p actuators of system (1), the input signal ū
is split between the undesirable input signal w ∈ F(W), W := [−1, 1]p, and the controlled input
signal u ∈ F(U), U := [−1, 1]m. Matrix B̄ is accordingly split in B ∈ Rn×m and C ∈ Rn×p so that
the dynamics become

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn. (2)

We want to study how the partial loss of control authority affects the stabilizability and the
controllability of the nominal dynamics.

Definition 1. System (1) is stabilizable (resp. controllable) if there exists an admissible control
signal ū ∈ F(Ū) driving the state of system (1) from any x0 ∈ Rn to 0 ∈ Rn (resp. to any
xtg ∈ Rn).

To adapt these two properties to system (2), we first need the notion of resilient reachability
introduced in [9].

Definition 2. A target xtg ∈ Rn is resiliently reachable from x0 ∈ Rn by system (2) if for all
w ∈ F(W), there exists T ≥ 0 and u ∈ F(U) such that u(t) only depends on w([0, t]) and the
solution to (2) exists, is unique, and x(T ) = xtg.

Note that u(t) is allowed to depend on w(t) thanks to real time sensors on all actuators of the
system, even on the malfunctioning ones.

Definition 3. System (2) is resiliently stabilizable (resp. resilient) to the loss of the actuators
corresponding to C if 0 ∈ Rn (resp. every xtg ∈ Rn) is resiliently reachable from any x0 ∈ Rn by
system (2).

We are now led to our first problem.

Problem 1. Determine whether system (2) is resiliently stabilizable and/or resilient.

Even if system (2) is not resilient, it might still be able to resiliently reach some targets, just
not all of Rn.

Problem 2. Determine the states xtg ∈ Rn that are resiliently reachable from a given x0 ∈ Rn by
system (2).
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For time-constrained missions, resilience is not sufficient. We also need to quantify how much
slower the malfunctioning system is compared to the nominal one. To do so, we follow [13] and
introduce the nominal reach time

T ∗
N(x0, xtg) := inf

ū∈F(Ū)

{
T > 0 : x(T ) = xtg

in system (1)

}
, (3)

the malfunctioning reach time

T ∗
M(x0, xtg) := sup

w∈F(W)

{
inf

u∈F(U)

{
T > 0 : x(T ) = xtg

in system (2)

}}
, (4)

and the quantitative resilience

rq(xtg) := inf
x0 ∈Rn

T ∗
N(x0, xtg)

T ∗
M(x0, xtg)

. (5)

If x0 = xtg, then T
∗
N = T ∗

M = 0 and we take the convention that their ratio is 1. If xtg is reachable
from x0 by system (1), then Theorem 4.3 of [29] states that the inf in (3) becomes min since
Ū is compact and convex. Similarly, T ∗

M in (4) is achieved by optimal signals w∗ ∈ F(W) and
u∗ ∈ F(U) when system (2) is resilient.

The only way to calculate u∗ without any future knowledge of w∗ is to solve the intractable
Isaac’s main equation [8], which is the differential games counterpart of the Hamilton-Jacobi-
Bellman (HJB) equation. According to [24], Isaac’s main equation is even more difficult to solve
than the HJB equation, which usually results in intractable partial differential equations [29].
Hence, [8] produces only suboptimal solutions, itself concluding that its practical contribution is
minimal.

Instead of the setting of [8], we choose [32], where u∗ and w∗ are unique, bang-bang [31], and
make a time-optimal transfer from x0 to xtg. The controller knows that w

∗ will be chosen to make
T ∗
M the longest. Thus, u∗ is chosen to react optimally to this worst undesirable input. Then, w∗

is chosen, and to make T ∗
M the longest, it is the same as the controller had predicted. Hence, from

an outside perspective it appears as if the controller built u∗ knowing w∗ in advance, as reflected
by (4). Then, T ∗

M is time-optimal and can be meaningfully compared with T ∗
N , leading to the

following problem.

Problem 3. Quantify the resilience of system (2).

We will now provide the background results upon which we build our theory.

3 Background Results

We first introduce Hájek’s differential games approach [21] which relies on dynamics

ẋ(t) = Ax(t) + z(t), x(0) = x0 ∈ Rn, z(t) ∈ Z, (6)

where Z ⊆ Rn is the Minkowski difference between the set of admissible control inputs BU :={
Bu : u ∈ U

}
and the opposite of the set of undesirable inputs CW :=

{
Cw : w ∈ W

}
, i.e.,

Z := BU ⊖ (−CW) =
{
z ∈ BU : z − Cw ∈ BU for all w ∈ W

}
.

Theorem 1 (Hájek’s duality theorem [21]). The state of system (2) can be driven to 0 ∈ Rn at
time T for all w ∈ F(W) by control signal u ∈ F(U) if and only if the state of system (6) can be
driven to 0 at time T by a control signal z ∈ F(Z), and Bu(·) = z(·)− Cw(·).
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Informally, Z represents the control available after counteracting any undesirable input. Since
Ū is symmetric, compact, and convex, sets BU and CW also have these properties by linearity.
According to [27], Z is then also symmetric, compact, and convex.

Theorem 1 transforms the resilient stabilizability of system (2) into the stabilizability of system
(6). Because inputs are bounded, Kalman’s stabilizability condition [23] do not apply, instead we
employ Corollary 3.6 of [15].

Theorem 2 (Stabilizability condition [15]). If Ū ∩ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system (1)
is stabilizable if and only if rank

(
C(A, B̄)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector v

of A⊤ satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .

The first condition of Theorem 2 ensures the existence of a control canceling B̄ū so that the
state can be maintained at an equilibrium. The rank condition is Kalman’s [15] and the last two
conditions guarantee that the drift term Ax does not prevent stabilization. If Ū = Rm, Theorem 2
reduces to the usual stabilizability condition.

To verify controllability we use Corollary 3.7 of [15], which is very similar to Theorem 2 except
that the eigenvalues of A must have a zero real part to avoid creating a drift preventing the
reachability of affine targets.

Theorem 3 (Controllability condition [15]). If Ū ∩ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system (1)
is controllable if and only if rank

(
C(A, B̄)

)
= n, Re

(
λ(A)

)
= 0, and there is no real eigenvector v

of A⊤ satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .

We now have all the background results to start solving Problem 1 by investigating resilient
stabilizability.

4 Resilient Stabilizability

In this section, we first establish a simple resilient stabilizability condition before deriving a more
complex condition with a wider range of application.

Proposition 1. If int(Z) ̸= ∅, then system (2) is resiliently stabilizable if and only if Re
(
λ(A)

)
≤

0.

Proof. According to Theorem 1, the resilient stabilizability of system (2) is equivalent to the stabi-
lizability of system (6). We apply Theorem 2 and obtain that if Z∩ker(I) ̸= ∅ and int(co(Z)) ̸= ∅
in Rn, then system (6) is stabilizable if and only if rank

(
C(A, I)

)
= n, Re

(
λ(A)

)
≤ 0, and there

is no real eigenvector v of A⊤ satisfying v⊤Iz ≤ 0 for all z ∈ Z.

Because ker(I) = {0}, the first condition becomes 0 ∈ Z. Since Z is convex, the second
condition becomes int(Z) ̸= ∅, which is equivalent to 0 ∈ int(Z) according to Lemma 1 of
Appendix A. This second condition implies the first one, so we only keep int(Z) ̸= ∅.

We now assume that int(Z) ̸= ∅ and we simplify the last three conditions. Since rank(I) = n,
the third condition is always true. Lemma 1 yields 0 ∈ int(Z). Thus, there exists ε > 0 such that
Bn(0, ε) ⊆ Z. If A⊤ has no real eigenvector, the last condition is trivially true. Otherwise, for v
be a real eigenvector of A⊤. Let z = ε v

∥v∥ , then z ∈ Bn(0, ε), so z ∈ Z and v⊤Iz = ε∥v∥ > 0. ■
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Proposition 1 has a limited range of application because of its requirement int(Z) ̸= ∅ in Rn,
i.e., Z must be of dimension n. However, stabilizability does not require BU to be dimension n,
so resilient stabilizability should not require that from Z either. We then want our condition to
rely on the relative interior of Z instead of its interior.

Definition 4. The relative interior relint(S) of a set S is the interior of S considered as a subset
of its affine hull.

Definition 5. The affine hull of a set S is the largest subspace included in S with respect to
inclusion.

If we apply Theorem 2 to system (6) as in Proposition 1, then int(Z) ̸= ∅ will appear. Instead,
we first need to transport system (6) into a basis adapted to Z. Let r := dim(Z) ≤ n. If Z = ∅,
we take the convention that r = −∞ and Z := [ ] ∈ Rn×0, the empty matrix with Im([ ]) = ∅.
Otherwise, according to Lemma 2 of Appendix A, we have 0 ∈ Z. Then, span(Z) is a vector space
from which we take a basis {z1, . . . , zr} in Rn. We define the matrix Z :=

(
z1, . . . , zr

)
∈ Rn×r

with the convention that Z = 0 ∈ Rn×1 if r = 0. Then, Im(Z) = span(Z) and we can formulate a
resilient stabilizability condition less restrictive than Proposition 1.

Proposition 2. If relint(Z) ̸= ∅, then system (2) is resiliently stabilizable if and only if
Re
(
λ(A)

)
≤ 0, rank

(
C(A,Z)

)
= n, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0

for all z ∈ Z.

Proof. We apply Theorem 1 and work on system (6). Since z1, . . . , zr are linearly independent,
we complete this sequence into a basis of Rn with V := (vr+1, . . . , vn) and obtain a transition
matrix Tz = (Z, V ). We change basis in system (6) with x = T−1

z y so that ẋ(t) = T−1
z ẏ(t) =

T−1
z Ay(t) + T−1

z z(t) = Âx(t) + s(t), with Â = T−1
z ATz and s(t) ∈ S := T−1

z Z =
{
T−1
z z : z ∈ Z

}
.

By definition, zi = Tzei and thus S ⊆ span({e1, . . . , er}) in Rn. Let s ∈ S. Then,

s =

 s1
...
sr

0n−r,1

 =
(

Ir
0n−r,r

)(s1
...
sr

)
:= B̂ŝ,

with B̂ = T−1
z Z ∈ Rn×r and ŝ ∈ Rr, ŝ ∈ Ŝ := projr(S), the projection of S onto Rr. Hence, the

stabilizability of system (6) is equivalent to that of system
˙̂x(t) = Âx̂(t) + B̂ŝ(t), x̂(0) = T−1

z x0, ŝ(t) ∈ Ŝ. (7)

Applying Theorem 2 to system (7) leads to the following stabilizability conditions: Ŝ ∩ker(B̂) ̸= ∅,
int(co(Ŝ)) ̸= ∅, Re(λ(Â)) ≤ 0, rank

(
C(Â, B̂)

)
= n, and there is no real eigenvector v̂ of Â⊤

satisfying v̂⊤B̂ŝ ≤ 0 for all ŝ ∈ Ŝ. We now simplify these five conditions.

1. Since B̂ = ( Ir
0 ), rank(B̂) = r, and hence ker(B̂) = {0} in Rr. Then, Ŝ ∩ ker(B̂) ̸= ∅

is equivalent to 0 ∈ Ŝ = projr(T
−1
z Z). In turn, this is equivalent to the existence of

v ∈ Rn−r such that Tz ( 0
v ) ∈ Z, i.e., V v ∈ Z. By definition of V , Im(V ) ∩ span(Z) = {0}.

Thus, Ŝ ∩ ker(B̂) ̸= ∅ is equivalent to 0 ∈ Z, i.e., relint(Z) ̸= ∅ according to Lemma 2 of
Appendix A.

2. By definition of S, int(Ŝ) ̸= ∅ in Rr is equivalent to relint(Z) ̸= ∅ since Tz is invertible.
3. Because Â = T−1

z ATz, λ(A) = λ(Â), and thus the third condition becomes Re(λ(A)) ≤ 0.

4. For i ∈ [[0, n− 1]], TzÂ
iB̂ = Tz

(
T−1
z ATz

)i
B̂ = AiTzB̂ = AiZ because TzB̂ = Z. Hence,

Im
(
TzC(Â, B̂)

)
= Im

(
C(A,Z)

)
. Then, the invertibility of Tz leads to rank

(
C(Â, B̂)

)
=

rank
(
C(A,Z)

)
[20].
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5. Assume that v̂ is a real eigenvector of Â⊤ associated to the eigenvalue λ̂. Then, v := T−⊤
z v̂

is an eigenvector of A⊤ associated to the same eigenvalue λ̂ [20]. For ŝ ∈ Ŝ, we have B̂ŝ ∈ S
by definition. Hence, if we define z := TzB̂ŝ, we have z ∈ Z. Then, v̂⊤B̂ŝ = v⊤TzB̂ŝ = v⊤z.
■

To further expand the applicability of our resilient stabilizability condition, we now remove
the requirement relint(Z) ̸= ∅ from Proposition 2 and obtain a necessary and sufficient condition.

Theorem 4 (Resilient stabilizability condition). System (2) is resiliently stabilizable if and only
if rank

(
C(A,Z)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0

for all z ∈ Z.

Proof. Let us define the three properties stated in Proposition 2 as P1 :=“relint(Z) ̸= ∅”,
P2 :=“System (2) is resiliently stabilizable”, and P3 :=“rank

(
C(A,Z)

)
= n, Re

(
λ(A)

)
≤ 0, and

there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z”. Proposition 2 states that if
P1 holds, then P2 is equivalent to P3. We will now show that when P1 is false, so are P2 and P3,
which leads to P2 equivalent to P3 no matter the status of P1, which is exactly the statement of
this theorem.

Assume that P1 is false. Then, according to Lemmas 2, 5, and 6 of Appendix A, system
(2) is not resiliently stabilizable, i.e., P2 is false. We took the convention that Z = [ ] with
rank([ ]) = −∞, so P3 is false too. ■

Note that the rank condition in Theorem 4 concerns the pair (A,Z) and not (A,B) as one
might have wanted. For the stabilizability of these pairs to be equivalent, we need Z and BU to
have the same dimension.

Corollary 1. If dim(Z) = rank(B), then system (2) is resiliently stabilizable if and only if
rank

(
C(A,B)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0

for all z ∈ Z.

Proof. If Z = ∅, then rank(B) = −∞, i.e., B = [], so (2) is not resiliently stabilizable and
rank

(
C(A,B)

)
̸= n.

Now assume that Z ≠ ∅. From Lemma 4 of Appendix A we get Im(B) = Im(Z). Then,
Im
(
C(A,B)

)
= Im

(
C(A,Z)

)
. In the proof of Proposition 2 we had Im

(
C(A,Z)

)
= Im

(
TC(Â, B̂)

)
.

Since T is invertible, we obtain rank
(
C(A,B)

)
= rank

(
C(Â, B̂)

)
, and we conclude with the rest

of the proof of Proposition 2. ■

Notice how the three conditions listed in Corollary 1 are similar to the stabilizability conditions
from Theorem 2. We are then led to the following result.

Corollary 2. If dim(Z) = rank(B), then system (2) is resiliently stabilizable if and only if system
(1) is stabilizable.

Proof. Let v be a real eigenvector of A⊤. Assume first that there exists z ∈ Z such that v⊤z > 0.
By construction of B, U , and Z, we have Z ⊆ BU ⊆ B̄Ū . Hence, there exists ū ∈ Ū such that
z = B̄ū and v⊤B̄ū > 0.

On the other hand, assume that there exists ū ∈ Ū such that v⊤B̄ū > 0. According to
Lemma 4, span(Z) = Im(B̄). Then, the convexity of Z yields the existence of α ∈ R and z ∈ Z
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such that B̄ū = αz. Note that α ̸= 0 by definition of ū. If α > 0, we have v⊤z > 0. Otherwise,
α < 0 but we use the symmetry of Z to obtain −z ∈ Z and v⊤(−z) > 0.

Thus, the condition “there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈
Z” is equivalent to “there is no real eigenvector v of A⊤ satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū”
when dim(Z) = rank(B). According to Lemma 4 of Appendix A, Im(B) = Im(B̄). Hence,
rank

(
C(A,B)

)
= rank

(
C(A, B̄)

)
. Then, applying Corollary 1 to system (2) and Theorem 2 to

system (1) concludes the proof. ■

We have established several resilient stabilizability conditions, hence solving the first half of
Problem 1. We will now tackle its second part concerning affine targets.

5 Resilient Reachability

In this section we extend Hájek’s duality theorem [21] to affine targets and study the resilience of
linear systems.

Theorem 5 (Extended duality theorem). The state of system (2) can be driven to xtg ∈ Rn at
time T for all w ∈ F(W) by control signal u ∈ F(U) if and only if the state of system (6) can be
driven to xtg at time T by a control signal z ∈ F(Z), and Bu(·) = z(·)− Cw(·).

Proof. Consider system (2) with a target state xtg ∈ Rn, xtg ̸= 0. Let X(t) :=
(

x(t)−xtg

Axtg

)
∈ R2n.

Then,

Ẋ(t) = A2X(t) +B2u(t) + C2w(t),
X(0) = X0 ∈ R2n, u(t) ∈ U , w(t) ∈ W ,

(8)

with A2 =

(
A In
0n,n 0n,n

)
, B2 =

(
B
0n,m

)
, C2 =

(
C
0n,p

)
, and X0 =

(
x0 − xtg
Axtg

)
.

Let the target set be G =
{
( 0
a ) ∈ R2n

}
= {0}n × Rn.

Since 0 ∈ C2W , we can apply Hájek’s second duality theorem of [21] stating that G is resiliently
reachable in time T from X0 by system (8) if and only if G is reachable in time T from X0 by the
following system

Ẋ(t) = A2X(t) + v2(t), X(0) = X0, (9)

v2(t) ∈ V2 := B2U ∩
[
(B2U ⊕ GA2)⊖ (−C2W)

]
⊆ R2n,

where GA2 is the largest subspace of G invariant by A2. Take g = ( 0
a ) ∈ G, then

A2g =

(
A In
0n,n 0n,n

)(
0
a

)
=

(
a
0

)
.

Hence, A2g ∈ G ⇐⇒ a = 0, i.e., GA2 = {0}2n. Thus,
V2 =

{
v ∈ B2U : v − C2w ∈ B2U , for all w ∈ W

}
= Z × {0}n,

because of the architecture of B2 and C2. Then, system (9) is related to system (6) the same way
that system (8) is related to system (2). Therefore, the following statements are equivalent:

• xtg is resiliently reachable by system (2),
• G is resiliently reachable by system (8),
• G is reachable by system (9),
• xtg is reachable by system (6). ■
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Theorem 5 transforms resilience of system (2) into bounded controllability of system (6), which
we verify with Theorem 3. We can easily adapt the results of Section 4 to the resilience case by
reusing the same proofs, except that we use Theorems 5 and 3 instead of Theorems 1 and 2.

Proposition 3. If int(Z) ̸= ∅, then system (2) is resilient if and only if Re(λ(A)) = 0.

Corollary 3. If dim(Z) = rank(B), then system (2) is resilient if and only if system (1) is
controllable.

Theorem 6 (Resilience condition). System (2) is resilient if and only if rank
(
C(A,Z)

)
= n,

Re
(
λ(A)

)
= 0, and there is no real eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.

We now have all the results necessary to solve Problem 1. However, the condition Re
(
λ(A)

)
= 0

in Theorem 6 is not satisfied by most systems, that are hence not resilient. This reasoning led
us to Problem 2, i.e., the determination of the resiliently reachable set of system (2). Following
Theorem 5, we will now study the reachable set of system (6) given by

R(T, x0) :=

{
eAT

(
x0 +

∫ T

0

e−Atz(t) dt

)
, with z(t) ∈ Z for all t ∈ [0, T ]

}
.

Because analytical study of R(T, x0) is difficult, most of the research tries to approximate it
(see [19] and references therein). We want inner approximations of R(T, x0) in order to determine
the states that are guaranteed to be resiliently reachable. We will then present a method of
zonotopic underapproximation of R(T, x0) combining the approaches of [19] and [2].

Definition 6. A zonotope S ⊆ Rn is a set parametrized by a center c ∈ Rn and generators
g1, . . . , gq ∈ Rn expressed as S := {c+

∑q
i=1 αigi : αi ∈ [−1, 1]} and is denoted S = (c, g1, . . . gq).

Note that BU is a zonotope of center 0 and generators Bi, the columns of B. Similarly,
CW = (0, C1, . . . , Cp). However, Z is not a zonotope in general since these sets are not closed
under Minkowski difference except for some specific scenarios, as detailed in [2].

Following the work [2], we build an underapproximation of Z with a symmetric zonotope(
0, g1, . . . , gr

)
⊆ Z by removing or contracting the generators of BU . We apply the method

described in [19] to compute efficiently an inner approximation of R(T, x0). For N ∈ N, N ≥ 1,
we define

δt :=
T

N
, Ω0 := {x0}, V :=

{∫ δt

0

eA(δt−t)z(t) dt : z(t) ∈ Z for t ∈ [0, δt]

}
,

and the recursion Ωi+1 := eAδtΩi ⊕ V . Note that Ωi is the exact reachable set R(i δt, x0).

However, V is not a zonotope and cannot be computed exactly. Thus, we define the zonotope

Ṽ :=

(
0,

∫ δt

0

eA(δt−t)g1 dt, . . . ,

∫ δt

0

eA(δt−t)gr dt

)
,

and Ṽ ⊆ V since Ṽ corresponds to piecewise constant components of z(t) in
(
0, g1, . . . , gr

)
.

Then, we build Ω̃0 = Ω0 = {x0} and Ω̃i+1 := eAδtΩ̃i ⊕ Ṽ , which yields Ω̃i ⊆ Ωi for all i ≥ 0.
Since linear maps and Minkowski sums are straightforward on zonotopes [2, 19], Ω̃i is an easily
computable inner approximation of the reachable set R(i δt, x0). Note that the precision of the
approximation increases with N .

Before implementing this solution to Problem 2 in Section 7.1, we need to answer Problem 3
by quantifying the resilience of linear systems.
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6 Quantitative Resilience

Let us now investigate more complex missions where the target needs to be reached by a cer-
tain time. In such scenarios it is crucial to evaluate the maximal time penalty incurred by the
malfunctioning system.

Unlike in the driftless case [13], the optimal reach times T ∗
N (3) and T ∗

M (4) cannot be reduced
to a linear optimization and elude analytical expressions [6]. Following [17] and [32] we could
numerically compute these reach times, but not the quantitative resilience rq (5) since it would
require computing T ∗

N(x0) and T ∗
M(x0) for all x0 ∈ Rn. Instead, using Lyapunov theory [25],

we establish analytical bound on these two reach times for the target xtg = 0 and analytically
approximate rq.

6.1 Nominal reach time

Assume that A is Hurwitz. Then, for anyQ ≻ 0 there exists P ≻ 0 such that PA+A⊤P = −Q [25].
Let us consider any such pair (P,Q). We define the Lyapunov function V (x) := x⊤Px = ∥x∥2P [26].
Then, for x following (1) we have

V̇ (x) = ẋ⊤Px+ x⊤Pẋ = x⊤(A⊤P + PA)x+ 2x⊤PB̄ū = −x⊤Qx+ 2x⊤PB̄ū. (10)

We will now bound T ∗
N(x0).

Proposition 4. If system (1) is stabilizable and A is Hurwitz, then

T ∗
N(x0) ≥ 2

λPmin

λQmax

ln

(
1 +

λQmax∥x0∥P
2λPminb

P
max

)
, (11)

with bPmax := max
{
∥B̄ū∥P : ū ∈ Ū

}
.

Proof. Because Ū is compact and convex, and system (1) is stabilizable, there exists a time-
optimal control signal ū∗ ∈ F(Ū) driving the state from x0 to the origin in a finite time T ∗

N(x0) [29].

We now bound V̇ using (10). Since P ≻ 0, there exists M ∈ Rn×n such that P = M⊤M [20].
Then, x⊤PB̄ū = (Mx)⊤MB̄ū ≥ −∥Mx∥2∥MB̄ū∥2, by the Cauchy-Schwarz inequality [20]. Notice
∥Mx∥22 = x⊤M⊤Mx = x⊤Px = ∥x∥2P . Similarly, ∥MB̄ū∥2 = ∥B̄ū∥P .

The maximum bPmax exists since Ū is compact and the map ū 7→ ∥B̄ū∥P is continuous. Since
Q ≻ 0, we have x⊤Qx ≤ λQmax∥x∥22 and ∥x∥22 ≤ ∥x∥2P/λPmin because P ≻ 0. For x ̸= 0, we have
now lower bounded (10)

V̇ (x) =
d

dt
∥x∥2P ≥ −λ

Q
max

λPmin

∥x∥2P − 2bPmax∥x∥P . (12)

Let y(t) := ∥x(t)∥P , α := λQ
max

2λP
min

> 0, and β := bPmax > 0. For x ̸= 0 we divide (12) by 2y > 0 so that

ẏ ≥ f(y) := −αy − β. The solution of the differential equation ṡ(t) = f
(
s(t)
)
with s(0) = y(0) is

given by s(t) = e−αt
(
y(0) + β

α

)
− β

α
.

Since f is Lipschitz, we can apply the comparison lemma of [26] and we obtain y(t) ≥ s(t) for

all t ≥ 0. At time T = 1
α
ln
(
1 + α

β
y(0)

)
, we have s(T ) = 0. Because ∥x(t)∥P ≥ s(t) > 0 for all

t ∈ [0, T ], we have T ∗
N(x0) ≥ T . Substituting α and β yields (13). ■

The proof of Propositions 4, as well as subsequent Propositions 5, 6, and 7, is shorter than
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presented in the conference paper [12] due to our use of the comparison lemma [26]. We now upper
bound T ∗

N(x0).

Proposition 5. If rank(B̄) = n and A is Hurwitz, then

T ∗
N(x0) ≤ 2

λPmax

λQmin

ln

(
1 +

λQmin∥x0∥P
2λPmaxb

P
min

)
, (13)

with bPmin := min
{
∥B̄ū∥P : ū ∈ ∂Ū

}
.

Proof. The minimum bPmin exists since map ū 7→ ∥B̄ū∥P is continuous and ∂Ū is compact.

Because rank(B̄) = n, we can choose ū ∈ F(Ū) such that B̄ū(t) = − x(t)
∥x(t)∥P

bPmin for x(t) ̸= 0.

Indeed, assume for contradiction purposes that for some τ ≥ 0, ū(τ) /∈ Ū , i.e., ∥ū(τ)∥∞ > 1. Let

û := ū(τ)
∥ū(τ)∥∞ . Then, ∥û∥∞ = 1, so û ∈ ∂Ū , but ∥B̄û∥P = ∥B̄ū(τ)∥P

∥ū(τ)∥∞ =
bPmin

∥ū∥∞ < bPmin, which is a

contradiction. Hence, the proposed control signal is admissible and we implement it in (10).

We obtain 2x⊤PB̄ū = −2bPmin∥x∥P , so that

d

dt
∥x∥2P = V̇ (x) ≤ −λQmin

λPmax

∥x∥2P − 2bPmin∥x∥P . (14)

Let y(t) := ∥x(t)∥P , γ :=
λQ
min

2λP
max

> 0, and κ := bPmin > 0. For x ̸= 0, dividing (14) by 2y > 0, yields

ẏ ≤ f(y) := −γy − κ. As in Proposition 4, the comparison lemma of [26] yields y(t) ≤ s(t) =

e−γt
(
y(0) + κ

γ

)
− κ

γ
for all t ≥ 0 as long as y(t) > 0. At time T = 1

γ
ln
(
1 + γ

κ
y(0)

)
, s(T ) = 0.

Since y
(
T ∗
N(x0)

)
= 0, T ∗

N(x0) ≤ T . ■

We now bound the malfunctioning reach time T ∗
M following the same method applied to T ∗

N .

6.2 Malfunctioning reach time

We use the same Lyapunov function as above, but with x following (2), so V̇ (x) = −x⊤Qx +
2x⊤P (Bu+ Cw). We can now lower bound T ∗

M as we have done for T ∗
N .

Proposition 6. If system (2) is resiliently stabilizable and A is Hurwitz, then

T ∗
M(x0) ≥ 2

λPmin

λQmax

ln

(
1 +

λQmax∥x0∥P
2λPminz

P
max

)
, (15)

with zPmax := max
{
∥z∥P : z ∈ Z

}
.

Proof. Since BU and CW are compact, Z is compact [27], so zPmax exists. Since system (2) is
resiliently stabilizable, T ∗

M(x0) exists. Let w∗ ∈ F(W) and u∗ ∈ F(W) be the arguments of the
optimizations in (4). By definition of Z, z = Cw∗ + Bu∗ ∈ F(Z). Then, ∥Cw∗(t) + Bu∗(t)∥P ≤
zPmax, which yields

V̇ (x) ≥ −λ
Q
max

λPmin

∥x∥2P − 2zPmax∥x∥P .

We now proceed as in the second half of the proof of Proposition 4 to obtain (15). ■

Similarly, we upper bound the malfunctioning reach time.

11



Proposition 7. If int(Z) ̸= ∅ and A is Hurwitz, then

T ∗
M(x0) ≤ 2

λPmax

λQmin

ln

(
1 +

λQmin∥x0∥P
2λPmaxz

P
min

)
, (16)

with zPmin := min
{
∥z∥P : z ∈ ∂Z

}
.

Proof. According to Proposition 1, system (2) is resiliently stabilizable, hence a finite T ∗
M exists.

Since Z is compact, so is ∂Z, and thus zPmin exists. Because int(Z) ̸= ∅, according to Lemma 1,
0 ∈ int(Z). Then, the convexity of ∥ · ∥P yields

{
z ∈ Rn : ∥x∥P ≤ zPmin

}
⊆ Z, so z(t) :=

−x(t)
∥x(t)∥P

zPmin ∈ Z.

Let w∗ ∈ F(W) be the argument of the maximum in (4). Since z(t) ∈ Z, there exists u ∈ F(U)
such that z(t) = Cw∗(t) + Bu(t). Then, applying w∗ and u leads to an upper bound of T ∗

M since
u is not necessarily optimal, while w∗ is optimal. Hence

V̇ (x) ≤ −λQmin

λPmax

∥x∥2P − 2zPmin∥x∥P .

We now proceed as in the second half of the proof of Proposition 5 to obtain (16). ■

We can now bound T ∗
N(x0)/T

∗
M(x0) for all x0 ∈ Rn and hence obtain an approximate of

quantitative resilience rq which cannot be done with prior algorithms [17,32] that only compute a
single instance of T ∗

N(x0) or T
∗
M(x0).

6.3 Bounding quantitative resilience

If the system’s quantitative resilience rq is bounded by γ ≤ rq, then in the worst case, the
malfunctioning system will take less than 1/γ times longer than the nominal system to reach the
origin from the same initial state.

Theorem 7. If int(Z) ̸= ∅ and A is Hurwitz, then

rq ≥ max

(
λPminλ

Q
min

λPmaxλ
Q
max

,
zPmin

bPmax

)
, (17)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. According to Proposition 1, system (2) is resiliently stabilizable. Since int(Z) ̸= ∅, we
have dim(Z) = n, and Z ⊆ BU ⊆ Rn yields rank(B) = n. According to Corollary 2, system

(1) is stabilizable, so we can use (11) and (16). We define the positive constants a :=
λP
minλ

Q
min

λP
maxλ

Q
max

,

b := λQ
max

2λP
minb

P
max

, and c :=
λQ
min

2λP
maxz

P
min

, so that for x0 ∈ Rn, x0 ̸= 0, (11) and (16) yield

T ∗
N(x0)

T ∗
M(x0)

≥ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= f(∥x0∥P ).

Then, according to (5), rq ≥ inf
x0 ∈Rn

f(∥x0∥P ).

If b = c, then f(s) = a for all s ≥ 0, so rq ≥ a. If b > c, then f is increasing, so inf
{
f(s) : s >

0
}
= lim

s→0
f(s). L’Hôpital’s Rule [28] yields

lim
s→0

f(s) = lim
s→0

a
ln(1 + bs)

ln(1 + cs)
= lim

s→0
a

b
1+bs
c

1+cs

=
ab

c
.
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Then, f(0) = ab
c
=

zPmin

bPmax
> a. If c > b, then f is decreasing, so inf

{
f(s) : s ≥ 0

}
= lim

s→+∞
f(s) = a

by L’Hôpital’s Rule [28]. To sum up, inf
s≥ 0

f(s) = max
(
a, ab

c

)
≤ rq. ■

We can upper bound rq using a similar approach.

Theorem 8. If rank(B̄) = n, A is Hurwitz, and system (2) is resiliently stabilizable, then

rq ≤ max

(
λPmaxλ

Q
max

λPminλ
Q
min

,
zPmax

bPmin

)
, (18)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. With our assumptions we are allowed to use Propositions 5 and 6. We define the positive

constants a := λP
maxλ

Q
max

λP
minλ

Q
min

, b :=
λQ
min

2λP
maxb

P
min

, and c := λQ
max

2λP
minz

P
max

, so that for x0 ∈ Rn, x0 ̸= 0, (13) and

(15) yield

T ∗
N(x0)

T ∗
M(x0)

≤ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= g(∥x0∥P ).

Then, according to (5), rq ≤ inf
x0 ∈Rn

g(∥x0∥P ). This function g is similar to f in the proof of

Theorem 7, and thus rq ≤ inf
x0 ∈Rn

g(∥x0∥P ) = max
(
a, a b

c

)
, yielding (18). ■

Theorems 7 and 8 bound rq and hence solve Problem 3. We will now apply the developed
theory to two examples.

7 Numerical Results

We will first study the resilient reachability of the ADMIRE fighter jet model [18], before quanti-
fying the resilience of a temperature control system.

7.1 Resilient reachability of the ADMIRE fighter jet model

The ADMIRE model has already served as an application case in several control frameworks [10,22]
and is illustrated on Fig. 1.

Relying on the simulation package Admirer4p1 1 we run the ADMIRE simulation in MATLAB
and obtain the linearized dynamics at Mach 0.3 and altitude 2000m. We scale B̄ so that the
input set of each actuator from [18] is scaled to [−1, 1]. The states and matrices of the system
Ẋ(t) = AX(t) + B̄ū(t) are given below.

Consider a scenario in which, after sustaining damage, an actuator of the fighter jet starts
producing uncontrolled and possibly undesirable inputs. By studying B̄, we gain intuition on the
resilience of the jet. The effect of the yaw (resp. pitch) thrust vectoring on the yaw (resp. pitch)
rate is larger than that of all the other actuators combined, which gives the intuition that the jet
is not resilient to the loss control over thrust vectoring. None of the other actuators produce such
a dominant effect, hence giving the intuition that the jet is resilient to the loss of control over any
one of the first eight actuators.

1https://app.box.com/s/r9wfyjd9o4pq2if9xhd17yxeqc36j7ei
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Figure 1: The ADMIRE fighter jet model. Image modified from [18] with a different color for each
independent actuator.

Following Lemma 6, we test our intuition by verifying whether CW ⊆ BU . These sets are
zonotopes of dimension 9, represented in MATLAB using function zonotope(·) from the CORA
package [3]. The associated function in(·) is employed to verify their inclusion. As expected,
CW ⊆ BU for the loss of control over any one actuator except for the thrust vectoring ones, as
shown on Fig. 2. Note that for any projection proj(·), we have proj(CW) ⊈ proj(BU) implies
CW ⊈ BU , but proj(CW) ⊆ proj(BU) does not yield CW ⊆ BU .

(a) Yaw thrust vectoring. (b) Pitch thrust vectoring.

Figure 2: 2D projection of sets BU (blue) and CW (red) for the loss of control over the two thrust
vectoring actuators.

The eigenvalues of A do not verify either Re(λ(A)) = 0 or Re(λ(A)) ≤ 0. Thus, the system is
neither resilient nor resiliently stabilizable. However, as anticipated with Problem 2, the linearized
model is only valid locally and hence we should only study the resilient reachability of targets close
to the linearization equilibrium.

We follow the method detailed in Section 5 to approximate the resiliently reachable set of the
malfunctioning system. Assume the pilot lost control over the right outboard elevon ū3. We use
the CORA [3] function minus(·, ·) to underapproximate the Minkowski difference Z = BU ⊖CW
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X=



v

α

β

p

q

r

ψ

θ

φ



velocity (m/s),

angle of attack (rad),

sideslip angle (rad),

roll rate (rad/s),

pitch rate (rad/s),

yaw rate (rad/s),

heading angle (rad),

pitch angle (rad),

roll angle (rad),

A=



−0.02 −4.65 0.37 0 −0.3 0 0 −9.81 0

0 −0.78 0.01 0 0.97 0 0 0 0

0 0 −0.19 0.12 0 −0.98 0 0 0.1

0 0 −15.47 −1.5 0 0.54 0 0 0

0 4.18 −0.01 0 −0.78 0 0 0 0

0 0 0.95 −0.09 0 −0.34 0 0 0

0 0 0 0 0 1.01 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0.12 0 0 0



B̄⊤ =



−0.62 0 0 0.37 0.67 −0.19 0 0 0

−0.62 0 0 −0.37 0.67 0.19 0 0 0

−0.4 −0.02 0 −2.27 −0.55 −0.1 0 0 0

−0.62 −0.04 0.01 −1.96 −0.88 −0.22 0 0 0

−0.62 −0.04 −0.01 1.96 −0.88 0.22 0 0 0

−0.4 −0.02 0 2.27 −0.55 0.1 0 0 0

−0.16 0 0.02 1.59 0 −0.96 0 0 0

0.08 0 0 0 −0.02 0 0 0 0

−0.53 0 0.11 −0.64 0.01 −5.34 0 0 0

−1.78 −0.11 0 0 −6.63 0 0 0 0



right canard,

left canard,

right outboard elevon,

right inboard elevon,

left inboard elevon,

left outboard elevon,

rudder,

leading edge flaps,

yaw thrust vectoring,

pitch thrust vectoring.

as a zonotope (0, g1, . . . , g9), following the method of [2]. We take T = 0.2 s and N = 5. Then, we
underapproximate R(T, x0) with Ω̃N using the recursion Ω̃i+1 = eAδtΩ̃i ⊕ Ṽ of Section 5.

Since the malfunctioning actuator ū3 has a strong impact on the roll rate p of the jet, we want
to see what range of roll rates is reachable. We compute Ω̃1, . . . , Ω̃N and project them in 2D as
shown on Fig. 3. Then, in time T the jet can change its roll rate up to ±1.2 rad/s, despite the
loss of control over the right outboard elevon.

Figure 3: Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane.

We now study the impact of N , i.e., of δt on the precision of Ω̃N to approximate the real
reachable set R(T, x0) when keeping T constant. Since dim

(
R(T, x0)

)
= 9, we will only study

the impact on the range of roll rates reachable at roll angle ϕ = 0 rad. For N = 2 the reachable
range of roll rates is ±0.37 rad/s, while for N = 5 it is ±0.42 rad/s, and ±0.43 rad/s for N = 20,
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as illustrated on Fig. 3 and 4. Hence, as explained in Section 5, increasing N raises nonlinearly
the precision of Ω̃N and increases linearly the computational cost since Ω̃N is a zonotope with 9N
generators.

(a) N = 2. (b) N = 20.

Figure 4: Projection of Ω̃1, . . . , Ω̃N on the (ϕ, p) plane for different values of N .

Now assume that the in-flight damage responsible for the loss of control over the elevon ū3 also
initially caused it to jerk resulting in a sudden jump in roll rate. Then, instead of X(0) = 0 we
have p(0) = 0.44 rad/s and the goal is to stabilize the jet at the origin Xtg.

Figure 5: Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane. Initial state X0 is the blue dot, target Xtg

is the red dot, and N = 5.

We can see on Fig. 5 that the target only enters the projection of the reachable set after 4
iterations of δt = 0.04 s, i.e., for t ≥ 0.16 s. By choosing a smaller δt we can refine the precision
on the minimal entering time. However, to calculate the reachable time T ∗

M(X0, Xtg) we need to
use the CORA function in(·) to verify whether Xtg ∈ Ω̃N since Fig. 5 is only a 2D projection of
the 9D reachable set and could be deceiving. Indeed, for p(0) = 0.5 rad/s, the 2D projection is
similar to Fig. 5 with the red dot inside the projection of Ω̃N , but Xtg /∈ Ω̃N .

We successfully demonstrated the developed resilience theory and the zonotopic method to
underapproximate the resiliently reachable set of the ADMIRE jet model.
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7.2 Temperature control system

We now illustrate our quantitative resilience bounds on a temperature control system motivated
by [35] and illustrated on Fig. 6.

T1,1 T1,2 T1,3 T1,l

T2,1 T2,2 T2,3 T2,l

Tk,1 Tk,2 Tk,3 Tk,l

Figure 6: Heat exchange graph of an office building with k floors of l rooms, each at a temperature
Ti,j.

We study a scenario where a worker remains in their office after hours and manually opens or
closes their door and window, thus overriding the building heat controller which aims at main-
taining a target temperature Ttg. After this loss of control, we will compare our analytical bounds
on the nominal and malfunctioning reach times with the numerical results of [17, 32]. We will
also bound the quantitative resilience of the system which could not be done with prior work and
motivated the analytical bounds of Section 6.

The controller uses a central heater qh, central AC qAC , and incrementally opens doors qd and
windows qw for room specific adjustments. The controller also takes advantage of solar heating
qS, heat losses through the outside wall ql, and heat transfers between adjoining rooms qadj. The
temperature dynamics are then

mCpṪi,j = qh− qAC + qdi,j− qwi,j
+ qSi,j

− qli,j +
∑

qadj

with m the mass of air in each room, Cp its specific heat capacity, qadj = aU(Tadj − Ti,j), with a
the area of the wall between rooms, and U the overall heat transfer coefficient between adjoining
rooms, which depends on the wall materials. To have symmetric inputs, we combine the heat
transfers in pairs: qh − qAC =: QhACuhAC , qdi,j − qwi,j

=: Qdwu
i,j
dw, and qSi,j

− qli,j =: QSlu
i,j
Sl with

uhAC , u
i,j
dw, and u

i,j
Sl ∈ [−1, 1].

We write the dynamics as Ṫ = AT + B̄ū, with

A =
a

mCp

−2U U 0 0 . . . 0 U 0 0 . . .
U −3U U 0 . . . 0 0 U 0 . . .

0
. . . . . . . . . . . . . . .

 ,

B̄ =
1

mCp

(
QSlIkl,kl QdwIkl,kl QhAC1kl

)
,

ū⊤ =
(
u1,1Sl , . . . , u

k,l
Sl , u

1,1
dw, . . . , u

k,l
dw, uhAC

)
∈ R2kl+1 and T⊤ =

(
T1,1, . . . , Tk,l

)
∈ Rkl. To perform

numerical calculations, we restrict our building to k = 1 and l = 3, as schematized in Fig. 7.

Taking x := T − Ttg, the heat dynamics of the system illustrated on Fig. 7 are ẋ = Ax + B̄ū
with xtg = 0 and

A =
a

mCp

−Ug1 − U12 U12 0
U12 −U12 − U23 U23

0 U23 −U23 − U3g

 .
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Figure 7: Scheme of the rooms and of the heat transfers. The heater qh and AC transfers qAC are
not shown for clarity.

Based on [35], we use the following values: a = 12m2, mCp = 42186 J/K, Ug1 = 6.27W/K,
U12 = 5.08W/K, U23 = 5.41W/K, U3g = 6.27W/K, QhAC = 350W , Qdw = 300W , QSl = 200W ,
and Ttg = 293K.

Since λ(A) =
{
− 0.052,−0.033,−0.010

}
⊆ R−, A is Hurwitz. Then, according to Theorem 6,

the system is not resilient, but it might be resiliently stabilizable. For the loss of any one column
C, rank(B) = 3 and we numerically verify that −CW ⊆ int(BU). Then, following Lemma 3,
dim(Z) = 3, so int(Z) ̸= ∅. According to Proposition 1, the system is resiliently stabilizable.

The controller wants to cool the building overnight from an initial state chosen to be x⊤0 =(
0.8◦C, 0.7◦C, 0.9◦C

)
. However, a worker is overriding u1dw by manually opening the door and

window in room 1. We now compare the analytical bounds on the nominal and malfunctioning
reach times of Section 6 with the numerical results of [17, 32]. Our bounds require pairs P ≻ 0
and Q ≻ 0 solutions of A⊤P + PA = −Q. We generate randomly a thousand of such pairs (P,Q)
and compute bounds on T ∗

N with (11) and (13), and on T ∗
M with (15) and (16). Another way of

choosing P relies on the linearization of (15), which yields T ∗
M ≥ ∥x0∥P

zPmax
. This bound is maximized

when P ≻ 0 is the tightest ellipsoidal approximation of Z, which results in much tighter bound
than stochastic P , as shown on Fig. 8.

Figure 8: Bounds on the malfunctioning reach time T ∗
M(x0) in red. The dots are the upper (16)

and lower bounds (15) for 1000 stochastic pairs (P,Q). The tightest bounds in green and black
result from the ellipsoidal approximations of Z.

For the given x0 the best bounds on the reach times are 35.5 s ≤ T ∗
N(x0) = 42.5 s ≤ 54.1 s and

53 s ≤ T ∗
M(x0) = 110.5 s ≤ 135 s. Then, the rooms can take up to T ∗

M(x0)/T
∗
N(x0) = 2.6 times

longer to all reach Ttg from the initial state Ttg + x0 after the loss of control authority over u1dw,
while our bounds predict a worst-case factor of 3.8.

We were able to compute numerically T ∗
N(x0) [17] and T

∗
M(x0) [32], but accessing rq can only

be done analytically with Theorems 7 and 8. Over all x0 ∈ R3, they predict rq ∈ [0.166, 0.979].
Hence, the loss of control over u1dw can render the damaged system up to 1/0.166 = 6 times slower
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to reach the target temperature from any initial state. This information could not be obtained
with prior work and is the motivation for our analytical bounds in Section 6.

If instead of losing control over u1dw a disgruntled worker takes over the central heating/AC
unit uhAC , the rooms can take as much as T ∗

M(x0)/T
∗
N(x0) = 4.7 times longer to reach Ttg from

the same initial temperature, while our bound predicts a max ratio of 9.3. These values are larger
than for the loss of u1dw because QhAC > Qdw and the central heating/AC affects directly all 3
rooms. Additionally, Theorem 7 yields rq ∈ [0.1, 0.37], so the malfunctioning controller can take
between 2.7 and 10 times longer than nominally to enforce the target temperature from any initial
condition.

8 Conclusion and Future Work

This paper establishes novel necessary and sufficient conditions for the resilient stabilizability and
reachability of affine targets by linear systems. Additionally, we quantified the resilience of control
systems to the loss of authority over some of their actuators.

There are several avenues of future work. Building on our resilient stabilizability conditions,
we have started to work on the resilience of networks to a partial loss of control authority over
actuators of a subsystem. Another interesting problem is to ensure the safety of critical systems
by preventing them from visiting dangerous locations while completing their mission even after
enduring a loss of control. Future work should also aim at extending resilience theory to nonlinear
systems. The main hurdle to this last project is to establish a new proof of Hájek’s duality theorem.
Indeed, this result is essential for resilience theory and its current proof relies on the linearity of
the dynamics, hence preventing a straightforward extension to nonlinear systems.

A Supporting Lemmata

In this appendix we provide supporting results concerning sets BU , CW , and Z defined in Sec-
tion 3.

Lemma 1. The interior of Z is non-empty if and only if 0 ∈ int(Z).

Proof. Since Z is convex and symmetric, so is its interior [30]. If int(Z) ̸= ∅, there exists
z ∈ int(Z), by symmetry −z ∈ int(Z), and 0 ∈ int(Z) by convexity. The reverse implication is
trivial. ■

Lemma 2. The following statements are equivalent: (a) 0 ∈ relint(Z), (b) 0 ∈ Z, (c) Z ≠ ∅,
(d) relint(Z) ̸= ∅.

Proof. Since relint(Z) ⊆ Z, we have (a) =⇒ (b) and trivially, (b) =⇒ (c). Since Z is a convex
subset of Rn, (c) =⇒ (d) according to Lemma 7.33 of [1]. Because Z is convex and symmetric, so
is its relative interior according to [30]. Then, the same proof as for Lemma 1 yields (d) =⇒ (a)
which completes the proof. ■

Definition 7. The dimension of a compact set S is the dimension of the smallest affine subspace
(with respect to inclusion) containing S [1].
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Lemma 3. The relative interior of BU contains −CW if and only if dim(Z) = rank(B).

Proof. Let q := dim(BU) ≤ n. Since U = [−1, 1]m−p, its interior is not empty in Rm−p and
thus q = rank(B). Take q linearly independent vectors of BU denoted by Bq := (b1, . . . , bq) and
pick V := (vq+1, . . . , vn) ∈ Rn×(n−q) such that Tb := (Bq, V ) is invertible. Then, Tb is a transition
matrix with Tbei = bi for i ∈ [[1, q]].

Assume first that −CW ⊆ relint(BU). Then, there exists ε > 0 such that Tb
(
Bq(0, ε) ×

{0}n−q
)
⊕ −CW ⊆ BU . Informally, −CW remains in BU when it is ’extended’ by ε in all

q dimensions of BU . Because Z =
{
z ∈ Rn : {z} ⊕ −CW ⊆ BU

}
, we have Tb

(
Bq(0, ε) ×

{0}n−q
)
⊆ Z. Then, q ≤ dim(Z). Since 0 ∈ −CW , Z ⊆ BU , and hence dim(Z) ≤ q. Thus,

dim(Z) = q = rank(B).

On the other hand, assume that dim(Z) = q. Since 0 ∈ −CW , Z ⊆ BU . Then, Z being of
same dimension and included in BU yields that (b1, . . . , bq) is also a basis of span(Z) = Im(B).
Hence, Tb is a transition matrix from Rn to span(Z). According to Lemma 2, 0 ∈ relint(Z),
i.e, there exists δ > 0 such that Tb

(
Bq(0, δ) × {0}n−q

)
⊆ Z. As above, the definition of Z

yields Tb
(
Bq(0, δ) × {0}n−q

)
⊕ (−CW) ⊆ BU . Because dim(Bq(0, ε)) = q = dim(BU), we have

−CW ⊆ relint(BU). ■

Lemma 4. If dim(Z) = rank(B), then span(Z) = Im(B) = Im(B̄).

Proof. In the proof of Lemma 3 we showed that span(Z) = Im(B). The inclusion −CW ⊆
relint(BU) holds according to Lemma 3 and yields Im(C) ⊆ Im(B), and since B̄ = [B C] after
adequate column permutations, we have Im(B̄) = Im([B C]) = Im(B). ■

Lemma 5. Set Z is empty if and only if set CW is not entirely included in BU , i.e., Z = ∅ ⇐⇒
CW ⊈ BU .

Proof. If Z = ∅, then by definition, for all z ∈ BU , there exists w ∈ W such that z − Cw /∈ BU .
Taking z = 0 yields CW ⊈ BU .

On the other hand, assume that there exists w ∈ W such that Cw /∈ BU . Assume for
contradiction purposes that Z ≠ ∅. Then, we can take z ∈ Z and z − Cw ∈ BU . Since BU is
symmetric, we thus have −z+Cw ∈ BU . Because z ∈ Z and −w ∈ W , we also have z+Cw ∈ BU .
The convexity of BU yields 1

2
(−z+Cw)+ 1

2
(z+Cw) ∈ BU , i.e., Cw ∈ BU which contradicts our

first assumption. Hence, Z = ∅. ■

Lemma 6. If CW ⊈ BU , then system (2) is not resiliently stabilizable.

Proof. Since CW ⊈ BU , there exists w ∈ W such that Cw /∈ BU . The sets {Cw} and BU
are nonempty, disjoint, convex, and compact, hence they are strongly separated according to
Theorem 5.79 of [1]. Then, there exists v ∈ Rn, v ̸= 0, c > 0, and ε > 0 such that ⟨Cw, v⟩ ≥ c+ ε,
and for all u ∈ U , ⟨Bu, v⟩ ≤ c − ε. Because BU and CW are symmetric, {−Cw} and BU are
also strongly separated by the symmetric hyperplane: ⟨−Cw, v⟩ ≤ −c − ε and for all u ∈ U ,
⟨Bu, v⟩ ≥ −c+ ε.

If A ̸= 0, then ∥A∥ > 0. Since v ̸= 0, we can define r := ε
∥v∥ ∥A∥ > 0. We will show that if

x ∈ Bn(0, r), then no controls u ∈ U can bring the state x closer to the origin. Let x ∈ Bn(0, r)
and first assume that ⟨x, v⟩ ≥ 0. Then, we apply the undesirable input w and any control u ∈ U
to system (2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨Cw, v⟩ ≥ −∥Ax∥ ∥v∥ − c+ ε+ c+ ε ≥ −∥A∥ ∥x∥ ∥v∥+ 2ε ≥ ε,
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−Cw
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v
ε

Figure 9: Illustration of the strong separation of sets BU (blue) and {±Cw} (green) by symmetric
hyperplanes.

where we used the Cauchy-Schwarz inequality [20], the definition of ∥A∥ and ∥x∥ ≤ r. Similarly,
if ⟨x, v⟩ < 0, we apply the undesirable input −w and any control u ∈ U to system (2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨−Cw, v⟩ ≤ ∥A∥ ∥x∥ ∥v∥+ c− ε− c− ε ≤ r∥A∥ ∥v∥ − 2ε = −ε.
Thus, the state x ∈ Bn(0, r) can be pushed away from the origin along v. Hence, system (2) is
not stabilizable.

If A = 0, we can take any x ∈ Rn such that ⟨x, v⟩ ≥ 0 (resp. ≤ 0) and obtain ⟨ẋ, v⟩ ≥ 2ε (resp.
≤ −2ε) so the same conclusion holds. ■
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