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More than 1m litres of untreated sewage released =

into waterways and local parks The Nauka module of the ISS lost control

authority over its thrusters.

M. Bartels, “Russia says ‘software failure’ caused thruster misfire at space station,” space.com, 2021.
J. Slay and M. Miller, “Lessons learned from the Maroochy water breach,” in Critical Infrastructure Protection, Springer, 2008.
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Framework

Loss of control authority over an
actuator, that now produces
uncontrolled and possibly
undesirable inputs with its full
actuation capacity.

Fault Detection and Isolation
module measuring in real-time all
actuators outputs.

J. Davidson, F. Lallman, and T. Bundick, “Real-time adaptive control allocation applied to a high-performance aircraft,” in 5th SIAM Conference on Control, 2001.
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Framework

Nominal system

x(t) = f(x(2), u(t)), x(0) = xo,  u(t) €U

After a partial loss of control authority over actuators,
we split u into u (controls) and w (undesirable inputs).

Malfunctioning system

x(t) = f(x(t), [ult) w®)]), x(0) = x,, u(t) € U, w(t) € W.

E Grainger College
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Problems of interest (1)

Can the malfunctioning system still complete the nominal mission?

Target T is resiliently reachable from x, by the malfunctioning
system if for all w € W there exists u,, €U and T = 0 such that
x(T)eT.

Problem 1: Under what condition is a target T resiliently reachable
by the malfunctioning system?

E Grainger College

5
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Problems of interest (2)

Safety critical systems should be capable of resiliently
completing their mission despite a loss of control authority over
any one of their actuators.

Nominal system is resilient to a loss of control authority if any
target T isresiliently reachable by malfunctioning system.

Problem 2: How to design asystem resilient to the loss of
control authority over any one of its actuators?

T | of engnecring . Aerospace Engineering
6
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Problems of interest (3)

\ 9 Nominal reach time Ty (xo, Xg0a1)

I
-
-

. *goal  Malfunctioning reach time Ty (xo, X40a1)

: /!
— _7 S - . Ty (X0.Xgoal
%—* T, = 40s Quantitative resilience 1, = inf N(*oXgoal)

: / X0, Xgoal T;\;[(xorxgoal)

Problem 3: How to calculate efficiently the quantitative resilience of
an autonomous system??

E Grainger College

of Engineering Aerospace Engineering
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Problems of interest (4)

Limiting assumptions:

« the controller u(t) has immediate knowledge of the
undesirable input w(t)

 the nominal missionistoreach atarget T

e the nominal dynamics are linear: x(t) = Ax(t) + Bu(t).

Problem 4: How to extend the scope of resilience theory?

T | of engnecring . Aerospace Engineering
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Outline

l.  Linear systems with bounded energy
A. Resilient reachability
B. Resilience of driftless systems
C. Control synthesis

II. Linear systems with bounded amplitude
A. Resilient reachability
B. Quantitative resilience of driftless systems
C. Quantitative resilience of linear systems

Ill. Latest contributions to resilience theory

A. Extensions of resilience theory
B. Resilience of an orbital inspection mission
C. Resilience of linear networks
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Linear systems with bounded energy

Nominal system: x(t) = Ax(t) + Bu(t) x(0) = x,.

Partial loss of control authority: split B in B controlled actuators
and C uncontrolled actuators. Similarly, u is split in controls u and
undesirable inputs w.

Malfunctioning system:. x(t) = Ax(t) + Bu(t) + Cw(t) x(0) = x,.

Energy bounded inputs: ||u||§2 = fooollu(t)llzdt <1 and ||w||%2 <1.

T | of engnecring . Aerospace Engineering
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Resilient reachability

From [Delfour], target 7 = {x € R" : ||x — xy0a]| < €} is resiliently
reachable from x, in a time T if and only if

sup {x (eTxy) + 1nf {S*x*(u)} + sup {R*x*(w)} — sup{x” (y)}}
l|lx*[|=1 weWw yeT

With the Riesz representation theorem, it simplifies to

T
max {hT(eATxO — Xgoal) — SUp {hTJ eAT=D By (t) dt} + sup {hTJ eAT=D Cyw(t) dt}} <e¢
— lull=1 0 0

Iwll=1

T

M. Delfour and S. Mitter, “Reachability of perturbed systems and min sup problems”, SIAM Journal on Control and Optimization, 1969.
J.-B. Bouvier and M. Ornik, “Resilient reachability for linear systems”, IFAC 2020.
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Resilient reachability

Driftless linear systems: x(t) = Bu(t) + Cw(t) x(0) =xo, llullf, <1, lwllf, <1.

The integral condition becomes ||ri?||a—x1{hT(x° —Xg0a1) * VT (ICTRI = IBTRID } < &

Resilient reachability before some time is dictated by the sign of
g(h) = |[CThl[ = |IBTAll.

A driftless systems is resilient if and only if ||r1£1|?—)(1g(h) <0 orif BB"—CC" > 0.

J.-B. Bouvier and M. Ornik, “Resilient reachability for linear systems”, IFAC 2020.
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Resilience of driftless systems

System x = Bu is p-resilient, if it is resilient to the loss of any p columns
of B.

How much overactuation is needed for 1-resilience?

B=[1 11O B=[1 1 1]/

INn n dimensions, 2n + 1 actuators are the minimum for 1-resilience.
2-resilience is much harder.

J.-B. Bouvier and M. Ornik, “Designing resilient linear systems”, IEEE Transactions on Automatic Control, 2022.
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Control synthesis

Aresilient control law u,, |luyll,, <1 should drive the state of
x(t) = Bu(t) + Cw(t) from x, to x4, despite any undesirable input
w satistying |lwl|l,, < 1.

If BBT — CCT > 0, there exists a > 0 such that
1, (t) = BT(BBT) ™ (—Cw(t) + a(x(t) — xgoar) ).
a depends on x,,4 — xo: the further the target, the smaller the control.

u,, yields asymptotical convergence.

J.-B. Bouvier and M. Ornik, “Designing resilient linear systems”, IEEE Transactions on Automatic Control, 2022.
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Linear systems with bounded amplitude

Malfunctioning system: x(t) = Ax(t) + Bu(t) + Cw(t) x(0) = x,.
Amplitude bounded inputs: u(t) € U and w(t) € W, hyperrectangles.

2 2 -
1 0 1 O 1
— — 1 1
For B [0 10 1] and C O]’
with U = [-1,1]* and W =[-1,1]: " .
—1 —1
-9 —2
21 0 1 2 21 0 1 2

Z=BUOS (—CW) = {z€eBU: Vw e W, z— Cw € BU} MinkowskKi difference of
BU= {Bu:u€Uland —CW = {—Cw : w € W}

J.-B. Bouvier and M. Ornik, “Quantitative resilience of linear systems”, European Control Conference 2022.
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Resilient reachability

Extension of Hajek's duality theorem: x(t) = Ax(t) + Bu(t) + Cw(t) is resilient
Ifand only if x(t) = Ax(t) + z(t) is controllable, with z(t) € Z = BU © (—CW).

The system is resilient if and only if Re(A(4)) =0, rank[Z AZ ...A""1Z] =n,
and there is no real eigenvector v of A" satisfying v'z<0 forall ze Z.

Matrix Z is built such that Image(Z) = span(2).

O. Hajek, “Duality for differential games and optimal control”, Mathematical Systems Theory, 1974.
R. Brammer, “Controllability in linear autonomous systems with positive controllers”, SIAM Journal on Control, 1972.
J.-B. Bouvier and M. Ornik, “Resilience of linear systems to loss of control authority”, Automatica, 2023.
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Quantitative resilience

Nominal reach time Ty (%o, Xg0a1) = —ienz‘f {T:x(T) = Xg0a1}
u 00
for x(t) = Ax(t) + Bu(t).

Malfunctioning reach time Ty(xo, %50a1) = Wseuvllgoo {u iengoo{ T:x(T) = xgoal}}

for x(t) = Ax(t) + Bu(t) + Cw(t).

® ) ege . T* x ,x ’__,....q- )%__‘TNZZOS
Quantitative resilience 7, = inf = Yo ¥goal) o 4 - T
X0, Xgoal Ty (X0, Xgoal) 9 S Vs ' 9

How to calculate 7,7 ERREI -
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Quantitative resilience of driftless systems

Nominal reach time Ty(d) = mi%{ T : BuT = d}
ue

for x(t) = Bu(t) and with d = x444; — Xo.

Malfunctioning reach time Ty (d) = max {mm{T >0:(Bu+Cw)T = d}}

for x(t) = Bu(t) + Cw(t) and with V vertices of W.

o . o TN(d) _
Quantitative resilience 1 = dlenﬂgn @) S 1.

J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of linear driftless systems”, SIAM Conference on Control and its Applications, 2021.
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Quantitative resilience of driftless systems

o n@ oy Rl el by eRd
T dews T*(d) des T*(d) des z+yll:x c Rtdl
€ pld)  des Ty(d)  de IEC%ECGBU{HTJF!/H L+ Y d}
2
. purple 1
Tq = min
deS purple + green 0
—1
The Maximax Minimax Quotient Theorem states _9
that the maximum occurs for d aligned with CW. ds

—Z2 =1 @ 1 2 3

J.-B. Bouvier and M. Ornik, “The Maximax Minimax Quotient Theorem”, Journal of Optimization Theory and Applications, 2022.
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Quantitative resilience of linear systems

Tr(xo) Nnominal reach timeto 0 for x(t) = Ax(t) + Bu(t).
Ty (xo) Malfunctioning reach time to 0 for x(t) = Ax(t) + Bu(t) + Cw(t).

Optimal inputs are bang-bang.

Geometrical approach cannot be adapted.

No closed form solution like in the driftless case.

Numerous algorithms to compute Ty.

Algorithms from pursuit-evasion game framework to compute Ty.

J. Eaton, “An iterative solution to time-optimal control,” Journal of Mathematical Analysis and Applications, 1962.
M. Athans, “The status of optimal control theory and applications for deterministic systems,” IEEE Transactions on Automatic Control, 1966.
Y. Sakawa, “Solution of linear pursuit-evasion games”, SIAM Journal on Control, 1970.
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Quantitative resilience of linear systems

If x(t) = Ax(t) + Bu(t) is controllable and 4 is Hurwitz,
P Q
then Ty(xg) = 2 Ag‘—mln (1 + Ampax”x,f,’"”), BUY
Anax 2 minbmax

P>0, Q>0, PA+A'P=-Q, |xllz=x"Px

and  bf .= max{||Bul|p : u € U}.

57 ’
P o .

_ . . L. 22 inll%o L ’
If B is full-rank, Ty(xg) = 2 0 In (1 + Zlﬁwxb%l;)’
with bE . = min{||Bullp : & € 9U}. _

J.-B. Bouvier and M. Ornik, “Quantitative Resilience of Linear Systems”, European Control Conference 2022.
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Quantitative resilience of linear systems

If x(t) = Ax(t) + Bu(t) + Cw(t) is resiliently stabilizable, then

, AP i ln(1+/1§wxllxollp>< I () < 2 Aﬁwxl <1+ mm||x0||P>
< 5 ,

Q P P P P
Anax 2 hminZmax 2MmaxZmin

min

P Q P P Q P
i (Ammllmm Zmin) < Tq < min (Amaxlmax : Zmax) |

D e B AP 29 bP

max min’‘min ~min

. P _ . . P — . T&(xO)
with  zp,.,, = min{l|zllp : z € 0Z}, zpgr=max{||lz]lp: z€ Z} and 7, = xolg%n T o)’

J.-B. Bouvier and M. Ornik, “Quantitative Resilience of Linear Systems”, European Control Conference 2022.
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Extensions of resilience theory

Limiting assumptions:
 the nominal mission is to reach a target T,

« the controller u(t) has immediate knowledge of the undesirable
input w(t),

« the nominal dynamics are linear: x(t) = Ax(t) + Bu(t).

E Grainger College
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Resilient trajectory tracking

Malfunctioning system x(t) = Ax(t) + Bu(t) + Cw(t) with x(0) = x,,
u(t) €U, w(t) €W and Z =BUO (—CW).

Reference trajectory: X,o¢(t) = Axper(t) + Zper(£) WIth  z..¢(t) € Zppf.
Initial error correction:

y(t) = Ay(t) + z. (1), y(0) = xo — xref(o): z:(t) € Z, (1.¢)

If Zrer ® 2, €2Z and (1.¢) isstabilizable in a time t,
then for all w, there exists u,, such that[x(t) = x.¢¢(t) forall ¢t = t;.

Grainger College
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Resilience despite actuation delay

Actuation delay 7 > 0 such that x(t) = Ax(t) + Bu(t, x(t — ©),w(t — 1)) + Cw(t)
with x(0) = x,, u(t) € U, w(t) € W.

y() =Ay@®) +z(t)  y(0)=e%x,  z(t) €Z; =BUO (—e’"CW) 4y(0)

f there is x; € G such that B(x,p) € G and y(T) = x,,
then forall w e W thereis u €U suchthat x(T+1) € G, G

with p = ”(CA) (e”(A)T — 1), ¢ = max{||[Cw]| : w € W},

and u(A4) = max {/1 (A+2AT)}.
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Resilience despite actuation delay

Actuation delay 7 > 0 such that x(t) = Ax(t) + Bu(t, x(t — ©),w(t — 1)) + Cw(t)
with x(0) = x,, u(t) € U, w(t) € W.

Reference trajectory:  Xper(t) = Axper(t) + Zper(t) WIth Zpof (1) € Zper.
() = Ay(D) +z:(t),  ¥(0) = "™ (xg — xrer (0)),  z:(t) € Z, (2.€)

If Zrer @ 2, € Z; and (2.¢) is stabilizable in a time ¢,
then |[x() —xer @] = p forall ¢t =t

Grainger College
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Resilience of nonlinear systems

x(t) = f(t,x(t)) + gt,x(t))(Bu(t) + Cw(t)), x(0)=1xy u(t)eU w(t)ew ()
x(t) = (&, x(6)) + g(t, x(@)) z(D), x(0)=x, z(t)EZ=BUO (-CW) (2)

Sufficient condition for resilience;

If x50a1 IS reachableinatime T by (2),
then x4,4; Is resiliently reachable intime T by (1).

The reverse implication is much more difficult.

il gFaE':gg.iZCe?.'.iegge Aerospace Engineering
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Resilience of an orbital inspection mission

 Target satellite (red) 100 | \/

* Four holding pointsat
80m (green) -

~— O B ©
* Fuel optimal inspection X

trajectory (blue) | /\
« Keep-out sphere (KOS) ) | , | . |

of radius 50m 400 200 0 200 400
Y (m)

M. Vavrina et al., “Safe rendezvous trajectory design for the Restore-L mission,” 29th AAS/AIAA Space Flight Mechanics Meeting, 2019.
N. Ortolano et al., “Autonomous optimal trajectory planning for orbital rendezvous, satellite inspection, and final approach based on convex optimization,” Journal of
the Astronautical Sciences, 2021.
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Nominal Clohessy-Wiltshire dynamics

. u3

X
X(t) = AX(t) + Ry (t)Bu(t), X = 2; ,
y

u;(t) € [0,1]

8 0 1 07 0 0 0 0 07 [rarget
0 0 0 1|m_[0 0 O O O
A= 302 0 0 20 — i I =i =8 -1 Camera of the chaser always
0 0 -2Q 0| 1 -1 -1 0 1 pointing at the target.

(0 mean orbital rate, r thrust-to-massratio, Ry(t) rotation matrix.
J.-B. Bouvier et al., “Resilience of orbital inspections to partial loss of control authority over the chaser satellite,” AAS/AIAA Astrodynamics Specialist Conference, 2022.
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Malfunctioning dynamics

+
After the loss of control authority over
thruster no.4 and @ctuation delay t:
W 0 O 97 F 0
O G 0 @ 0 r 0
_ (Y e i
& 1 1 -1 -1 —/2 — Pt ™ T
4 =f =1 1 Lo i

X(t) = AX (t—) + rRg (t)Bul(t,X(t — ), w(t — 1)) + rRy(t)Cw(t),

u;(t) € [0,1], w(t) € [0,1]

J.-B. Bouvier et al., “Resilience of orbital inspections to partial loss of control authority over the chaser satellite,” AAS/AIAA Astrodynamics Specialist Conference, 2022.
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Spacecraft resilience . icicd  undesirable

-C
-Zb

Polygons BU (blue), —CW (red), their
Minkowski difference Z (green) and the
largest ball Z,, (brown) centered on O Iin Z.

inputs inputs\

(1) X(t) = AX(t) + rRy(t)Bu(t) + rRy(t)Cw(t)
X(0) =X, u(®)euU w()ew

effective

INputs

) X(t) = AX(t) + rRy(t)z(t)
X(0) =Xy, z(t)€Z

3) X(t) = AX(t) + rBz(t)
X(0) =X, z(t)eZZ,

Z=BUO (-CW)={z€BU:z—Cw € BU forall w e W)}
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Spacecraft resilience

4+
After the loss of thruster no. 1, the 51
set of effective inputs Z (green) Pref
does not surround the origin. ol
AN AN
\% 5l
N\ 4
-5 0 ¢
Effective inputs on the

reference trajectory Ti..r.
The spacecraft can only track Ti..¢

after the loss of thruster no. 4
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Controller design

At time t controller u(t) hasonly accessto w(t —1) and X(t —1).

To estimate X(t), we use the Léchappé state predictor:
X,(t) =e"X(t—1) + ftt_T eAt=S)rRy (s)(Bu(s) + Cw(s — 1)) ds.

We prove that controller
Bu(t) = —Cw(t —7) + Ry ()Zrer(t) + Ry (8) BK(Xper(t) — X, (1))
guarantees resilient tracking
1X(®) = Xyer (O] < max([|X(0) = Xyer (O], ).

V. Léchappé et al., “New predictive scheme for the control of LTI systems with input delay and unknown disturbances,” Automatica, 2015.
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Numerical simulation

Actuation delay 7 = 0.2s Position error.

B A
E
o
5
80.5-
Trajectory tracking (red) 2
¢ x10° of the reference (blue). b |
— Ul i Velocity error.
2 Fl—ull 0
N |Iwl] Eo_s
=15} =
= r\l/\m §02
a 1 o
= =
0.5} Reference thrust (blue), So-
j——t—"——t——"~——jtracking thrust (red) and ~ | ewwf  ~ =~ ¥V = "
o 1t 2z 3 4 5 6 Tundesirable thrust ., &4 ¥ 9§ 8 = 8 B &

time (hours time (hours)
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Numerical simulation

15¢
Scenario: w(t) € [0, 1] is bang-bang,
~ .| | lw|| | actuation delay 7 = 1s.
é 600
S 0.5 g
=400}
| S
ol (e ( 0 LA IR LA L._) [ c
0 1 2 3 4 5 6 7 % 200
time (hours) S
Thrust magnitude on the tracking

trajectory (red), the reference (blue), o 1 2 3 4 5 6 7

and the undesirable thrust time (hours)
Position tracking error
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Summary of the simulations

1@' @ @ & 2
e Lipschitz . . |
081 O ¢ bang-bang With a given actuation delay t,
3 . how much undesirable thrust w
= 0B | can the tracking handle?
9 ¢
©
:é 0.4 o - |
4v)
o 0
0.2 O A .
O
0 ' ——
0 2 4 6 8 10

actuation delay 7 (s)
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. Linear systems with bounded energy

A. Resilient reachability
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Resilience of linear networks

A cyberattack on an electric grid causes a loss of control

over a power generator. Is the network resilient to such an S
attack? i

Nominal dynamics at nodei € [1, N]
x;(t) = Ajx;(t) + Biu;(t) + X D pexy (2).

After a loss of control authority in node N,

xy(t) = Ayxy(t) + Byuy(t) + Cywy (t) + X Dy exi (2). \
Can we still drive all the x; to 0? A
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Framework

Network X(t) =(A+D)X(t) + Bu(t) + D_yxy(t)
MaththlOﬂlﬂg ﬂOde xN(t) = ANxN(t) + BNuN(t) + DN,_X(t) + CNWN(t)

- xl(t) - A]_ o 0 - ﬂl(t) ] ~ -El coo 0
X() = : A=1: =~ i(t) = : B=|: -

_xN_l(t)_ O AN—l _aN—l(t)_ _ 0 BN—l_
0 D1,2 Dl,N—l | [ Dl,N ]
Dy, ™ . : :

D - E .. .. DN_Z,N_l DN—Z,N — D—N
Dn-11 Dy_1n-2 0 | IDn-1n.
Dy_-=1| Dy Dy n-> Dypn-1 ] 0
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Resilient node

If the isolated malfunctioning node is resilient, i.e,,
it xy(t) = Ayxy(t) + Byuy(t) + Cywy (t) is resilient
and the initial network was controllable,
then the network is resilient.

u ,
¥ —> A ¥
—H_ - !

: US;
U :—)X ') U ‘N :—}:1: ()

Toy example: two submarines connected with springs.
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Non-resilient node

Non-resilience: CyWy € ByUy, 1.€.,50me wy cannot be counteracted.
Then, xy cannot be resiliently driven to O by uy.
To prevent xy from diverging, we assume that Ay is Hurwitz.
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Non-resilient node

It Ay Is Hurwitz, then
T

o (Dlp,, < e=anT ("me)HPN " j et (252, + 1Dy X, ) dt),
0

with Py >0 such that APy + PyAy = —Qy <0, ay = —22 >,

1

el

U U
A Dy .
— —
m my

F ﬁ 'K_}‘; J”,"‘-."

] 1 T
12 —_— The o

X
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Impact of a non-resilient node

If Ay and A+ D are Hurwitz and B is full rank, then

Py P
Xl < L2max = WOmin oy oi-anit 4y oraman)t,
A&y —VVN

where b/ . = min{||Bu|lp : & € 0U} > 0 isthe minimal guaranteed control.

A+ D ' Dy ' An
I‘(j_ ¥ ' -K_P) - -K_),;:' ;’r;:h |
b Min EE{ i) b AN, m) |
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Impact of a non-resilient node

If Ay and A+ D are Hurwitz, B is full rank, aay =yyy and yz,N_ < ayb®.

then the network X is stabilizable in finite time.

Q P
A - . ) A )
a =—B% internal stability, v =||D_nll, |75* coupling strength,
max \ Amin

b} .., = min{||Bi|l, : & € 0U} minimal guaranteed control,
z,fl"c’lx = max{min{||Cywy + Byuyllp : uy € Uy} : wy € Wy} worst undesirable input.

A+ D - Dn . A
S i ANl
b in :_) } Dein ' Tad
X (1) (1)
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Conclusion

 We established analytical conditions to verify whether autonomous
systems are resilient to a loss of authority over some of their actuators.

 We quantified the resilience of these systems by comparing the
minimal reach times for the initial and the malfunctioning systems.

« We extended resilience theory to encompass trajectory tracking,
actuation delay and nonlinear dynamics.

« We applied these extensions to an orbital inspection mission.

 We derived partial resilience conditions for linear networks.
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Thank you for your attention
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Bounding quantitative resilience

F Actuators:
dwl 452 4w2 453 4w3 outside .
A « Central heating/AC dn — Qac
LN INITL INIAD .
tan| o Tan| Cas « Door/window of each room qa — Qw
Tooad % T1 € T P T3 € Toou « Sunshades/heat loss of each room g5 — g
‘ gl q12 q23 q3g’
g /,/ g 7// g / 1 1 .
W17 4R b hallvay  Objective:Ty =T, =Ty = Tyom
Xx=T —Tyoq %o =(0.8°C 0.7°C 0.9°C) * }
35.55 < Ty(xg) = 42.5s < 54.1s 53s < Ty (xy) = 110.55 < 1355 1o
Worst-case time increase by a factor % = 2.6 < 3.8 for this x,. ()
N70 50
0.097 < 1, < 2.79 yields a worst-case time increase by a factor W197 = 10.3 over all x;.
B .’;_kOO’ ”‘4(;0 600 800 | 1OI00

J.-B. Bouvier and M. Ornik, Quantitative Resilience of Linear Systems, European Control Conference 2022
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Quantitative Resilience Framework

Maximize x(t) ? Maximize (x(t), xgoq —x(t)) ? Assume that w is constant ? Assume that
w is the worst bang-bang input?

“Target Function Approach to Linear Pursuit Problems” by W. Borgest and P. Varaiya

Closed-loop capture: controller u*(t) only knows w*([0, t]) . For time optimal, only
general technique is to solve Isaac’s main equation: differential game equivalent of
HJIB equation (usually intractable PDE). Give sub-optimal solutions

Such a Ty; cannot be compared with time-optimal Ty

Open-loop capture: controller knows w* in advance
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The Maximax Minimax Quotient Theorem

max {llx+yll:x+y€R*d}

rey(d) = 22X ET . for deR®,  ||d| =1
If X and Y are two ?elglf{lyrlaxﬂwry” xryeR d}}
symmetric polytopes in R"* "
with X c Y®, 0X = {—x, x} — —
and dimY = n, then | 4/_ /_
max ryy(d) =1xy(x) . | S 3
lall=1 %

| \_/ ‘ \_/

https://www.youtube.com i 11 |
/watch?v=rjKzHyDJX40 ‘
|

J.-B. Bouvier and M. Ornik, “The Maximax Minimax Quotient Theorem”, Journal of Optimization Theory and Applications, 2022.
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Quantitative resilience of driftless systems

System [ %(t) = Bu(t) is resilient to the loss of a single column C if
and only if it is controllable, r(C) € (0,1] and r(—C) € (0,1],

max_a—

wming o+ w

where r(C) = W

W = [Wmin’wmax].

_|_
. - =maxa : Bu =+ a
e ueau{a u = xalC} and

r(—=C) =

If system x(t) = Bu(t) is resilient to the loss of a single column C, then
ry = min{r(C),r(—C)}.

J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of linear driftless systems”, SIAM Conference on Control and its Applications, 2021.
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Quantitative resilience of driftless systems

x® @) =Bu(t) uely, x(0)=x, xPD0)=0 forle[l, k—-1].
Nominal reach time[T, y (d) = _ienﬁf {T: x(T) —x, =d}.
u )

xF@) =Bult) +Cw(t) u€elU, weW, x(0=x, xP0)=0 forle[l, k-1].
Malfunctioning reach time [T y, (d) = sup { ing {T: x(T) —x¢ = d}}.

wE Wy (UE

If x=Bu iscontrollable,sois %% =Bu and T; y(d) = k! Ty(d).
If x = Bu + Cw is resilient, so is ® = Bu + Cw and Ty, (d) = Y/k! Ty (d).

o Ten(@ s
= - = . = .
Then, r dlenﬂgn —— e 14 For a resilient system, 7, € (0,1], sO 1y, 4, =1y

J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of generalized integrators”, IEEE Transactions on Automatic Control, 2023.
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Non-resilient node

If A4+ D is Hurwitzand B is full rank,

Py
VZmax Nb

I X(®)]lp < ML | pye(i=amt 4 pe(r-an)t
—VVn .
. A
with P > 0 such that (A+D)TP+P(A+D) =—Q<0, a=_%" y=
AR AN P R ~ _
”D—:N”p Py YN = ||DN_|| % and b,,;, = min{||Bul|p : u € dU}.
V min | V min |
! ' u? D : A
WS = AWV —
m My
<2_ _) -K_} .?JI;:HI
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