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The Nauka module of the ISS lost control 
authority over its thrusters.

M. Bartels, “Russia says ’software failure’ caused thruster misfire at space station,” space.com, 2021.
J. Slay and M. Miller, “Lessons learned from the Maroochy water breach,” in Critical Infrastructure Protection, Springer, 2008. 

Motivating examples
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Framework
Loss of control authority over an  
actuator, that now produces 
uncontrolled and possibly 
undesirable inputs with its full 
actuation capacity.

Fault Detection and Isolation 
module measuring in real-time all 
actuators outputs.

3

J. Davidson, F. Lallman, and T. Bundick, “Real-time adaptive control allocation applied to a high-performance aircraft,” in 5th SIAM Conference on Control, 2001.
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Framework

Nominal system

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , ത𝑢(𝑡) , 𝑥 0 = 𝑥0, ത𝑢 𝑡 ∈ ത𝒰.

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 𝑤(𝑡) , 𝑥 0 = 𝑥0, 𝑢 𝑡 ∈ 𝒰, 𝑤 𝑡 ∈ 𝒲.

Malfunctioning system

After a partial loss of control authority over actuators, 
we split ത𝑢 into 𝑢 (controls) and  𝑤 (undesirable inputs).

4
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Problems of interest (1)

Can the malfunctioning system still complete the nominal mission?

Target 𝒯 is resiliently reachable from  𝑥0 by the malfunctioning 
system if for all  𝑤 ∈ 𝒲 there exists  𝑢𝑤 ∈ 𝒰 and  𝑇 ≥ 0 such that 
𝑥 𝑇 ∈ 𝒯. 

Problem 1: Under what condition is a target  𝒯 resiliently reachable 
by the malfunctioning system?

5



Aerospace Engineering

Problems of interest (2)

Safety critical systems should be capable of resiliently 
completing their mission despite a loss of control authority over 
any one of their actuators.

Nominal system is resilient to a loss of control authority if any 
target  𝒯 is resiliently reachable by malfunctioning system.

Problem 2: How to design a system resilient to the loss of 
control authority over any one of its actuators?

6



Aerospace Engineering

Problems of interest (3)

Problem 3: How to calculate efficiently the quantitative resilience of 
an autonomous system?

7

Nominal reach time 𝑇𝑁∗(𝑥0, 𝑥𝑔𝑜𝑎𝑙)

Malfunctioning reach time 𝑇𝑀∗ (𝑥0, 𝑥𝑔𝑜𝑎𝑙)

Quantitative resilience 𝑟𝑞 = inf
𝑥0, 𝑥𝑔𝑜𝑎𝑙

𝑇𝑁
∗ (𝑥0,𝑥𝑔𝑜𝑎𝑙)

𝑇𝑀
∗ (𝑥0,𝑥𝑔𝑜𝑎𝑙)
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Problems of interest (4)

Limiting assumptions:
• the controller  𝑢(𝑡) has immediate knowledge of the 

undesirable input  𝑤(𝑡)
• the nominal mission is to reach a target  𝒯
• the nominal dynamics are linear:  ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + ത𝐵ത𝑢(𝑡).

Problem 4: How to extend the scope of resilience theory?

8
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Outline
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A. Resilient reachability
B. Quantitative resilience of driftless systems
C. Quantitative resilience of linear systems

III. Latest contributions to resilience theory
A. Extensions of resilience theory 
B. Resilience of an orbital inspection mission 
C. Resilience of linear networks 
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Linear systems with bounded energy

Nominal system:                ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + ത𝐵ത𝑢(𝑡) 𝑥 0 = 𝑥0.

Partial loss of control authority: split  ത𝐵 in  𝐵 controlled actuators 
and  𝐶 uncontrolled actuators. Similarly,  ത𝑢 is split in controls  𝑢 and 
undesirable inputs  𝑤 .

Malfunctioning system:   ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) 𝑥 0 = 𝑥0.

Energy bounded inputs:  𝑢 𝐿2
2 = 0

∞
𝑢 𝑡 2𝑑𝑡 ≤ 1 and  𝑤 𝐿2

2 ≤ 1.
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Resilient reachability

From [Delfour], target 𝒯 = 𝑥 ∈ ℝ𝑛 ∶ 𝑥 − 𝑥𝑔𝑜𝑎𝑙 ≤ 𝜀 is resiliently 
reachable from 𝑥0 in a time 𝑇 if and only if

M. Delfour and S. Mitter, “Reachability of perturbed systems and min sup problems”, SIAM Journal on Control and Optimization, 1969.
J.-B. Bouvier and M. Ornik, “Resilient reachability for linear systems”, IFAC 2020.

sup
𝑥∗ =1

𝑥∗ 𝑒𝐴𝑇𝑥0 + inf
𝑢 ∈ 𝑈

𝑆∗𝑥∗(𝑢) + sup
𝑤 ∈𝑊

𝑅∗𝑥∗(𝑤) − sup
𝑦 ∈ 𝒯

𝑥∗ 𝑦 ≤ 0.

With the Riesz representation theorem, it simplifies to

max
ℎ =1

ℎ⊤ 𝑒𝐴𝑇𝑥0 − 𝑥𝑔𝑜𝑎𝑙 − s𝑢𝑝
𝑢 =1

ℎ⊤න
0

𝑇

𝑒𝐴 𝑇−𝑡 𝐵𝑢 𝑡 𝑑𝑡 + s𝑢𝑝
𝑤 = 1

ℎ⊤න
0

𝑇

𝑒𝐴 𝑇−𝑡 𝐶𝑤 𝑡 𝑑𝑡 ≤ 𝜀.
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Resilient reachability

J.-B. Bouvier and M. Ornik, “Resilient reachability for linear systems”, IFAC 2020.

Driftless linear systems:   ሶ𝑥(𝑡) = 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) 𝑥 0 = 𝑥0,    𝑢 𝐿2
2 ≤ 1,    𝑤 𝐿2

2 ≤ 1.

The integral condition becomes   max
ℎ =1

ℎ⊤ 𝑥0 − 𝑥𝑔𝑜𝑎𝑙 + 𝑇 𝐶⊤ℎ − 𝐵⊤ℎ ≤ 𝜀.

Resilient reachability before some time is dictated by the sign of 
𝑔 ℎ ≔ 𝐶⊤ℎ − 𝐵⊤ℎ .

A driftless systems is resilient if and only if  max
ℎ =1

𝑔 ℎ < 0 or if  𝐵𝐵⊤ − 𝐶𝐶⊤ ≻ 0.
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Resilience of driftless systems
System  ሶ𝑥 = ത𝐵ത𝑢 is p-resilient, if it is resilient to the loss of any  𝑝 columns 
of ത𝐵.
How much overactuation is needed for 1-resilience?

ത𝐵 = 1 1 ത𝐵 = 1 1 1

ത𝐵 =
1 1
0 0

0 0
1 1

ത𝐵 =
1 1 1
0 0 0

0 0 0
1 1 1

ത𝐵 =
1 0 1
0 1 0

0 0.5
1 0.5

J.-B. Bouvier and M. Ornik, “Designing resilient linear systems”, IEEE Transactions on Automatic Control, 2022.

In 𝑛 dimensions, 2𝑛 + 1 actuators are the minimum for 1-resilience.
2-resilience is much harder.
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Control synthesis

If BB⊤ − CC⊤ ≻ 0, there exists 𝛼 > 0 such that
𝑢𝑤 t = 𝐵⊤ 𝐵𝐵⊤ −1 −𝐶𝑤 𝑡 + 𝛼 𝑥 𝑡 − 𝑥𝑔𝑜𝑎𝑙 .

𝛼 depends on 𝑥𝑔𝑜𝑎𝑙 − 𝑥0: the further the target, the smaller the control.

𝑢𝑤 yields asymptotical convergence. 

J.-B. Bouvier and M. Ornik, “Designing resilient linear systems”, IEEE Transactions on Automatic Control, 2022.

A resilient control law  𝑢𝑤,  𝑢𝑤 𝐿2 ≤ 1 should drive the state of  
ሶ𝑥 𝑡 = 𝐵𝑢 𝑡 + 𝐶𝑤 𝑡 from  𝑥0 to  𝑥𝑔𝑜𝑎𝑙 despite any undesirable input  
𝑤 satisfying  𝑤 𝐿2 ≤ 1.
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Linear systems with bounded amplitude
Malfunctioning system:   ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) 𝑥 0 = 𝑥0.
Amplitude bounded inputs:   𝑢 𝑡 ∈ 𝒰 and  𝑤 𝑡 ∈ 𝒲 , hyperrectangles.

J.-B. Bouvier and M. Ornik, “Quantitative resilience of linear systems”, European Control Conference 2022.

𝒵 = ℬ𝒰⊖ (−𝒞𝒲) = 𝑧 ∈ ℬ𝒰: ∀ 𝑤 ∈ 𝒲, 𝑧 − 𝐶𝑤 ∈ ℬ𝒰 Minkowski difference of 
ℬ𝒰 = 𝐵𝑢 ∶ 𝑢 ∈ 𝒰 and  −𝒞𝒲 = −𝐶𝑤 ∶ 𝑤 ∈ 𝒲 .

For 𝐵 =
1 0
0 1

1 0
0 1

and  𝐶 =
1
0

,

with 𝒰 = −1, 1 4 and  𝒲 = [−1, 1] :
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Extension of Hájek’s duality theorem: ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) is resilient 
if and only if ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑧(𝑡) is controllable, with 𝑧(𝑡) ∈ 𝒵 = ℬ𝒰⊖ (−𝒞𝒲).

The system is resilient if and only if  𝑅𝑒 𝜆 𝐴 = 0,  𝑟𝑎𝑛𝑘 𝑍 𝐴𝑍 …𝐴𝑛−1𝑍 = 𝑛,
and there is no real eigenvector  𝑣 of  𝐴⊤ satisfying  𝑣⊤𝑧 ≤ 0 for all  𝑧 ∈ 𝒵 .

Matrix  𝑍 is built such that  𝐼𝑚𝑎𝑔𝑒 𝑍 = 𝑠𝑝𝑎𝑛(𝒵).

O. Hájek, “Duality for differential games and optimal control”, Mathematical Systems Theory, 1974.
R. Brammer, “Controllability in linear autonomous systems with positive controllers”, SIAM Journal on Control, 1972.
J.-B. Bouvier and M. Ornik, “Resilience of linear systems to loss of control authority”, Automatica, 2023.

Resilient reachability
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Quantitative resilience

Nominal reach time 𝑇𝑁∗ 𝑥0, 𝑥𝑔𝑜𝑎𝑙 = inf
ഥ𝑢 ∈ ഥ𝑈∞

{ 𝑇 ∶ 𝑥 𝑇 = 𝑥𝑔𝑜𝑎𝑙}

for ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + ത𝐵ത𝑢(𝑡).

Malfunctioning reach time TM
∗ 𝑥0, 𝑥𝑔𝑜𝑎𝑙 = sup

𝑤 ∈𝑊∞

inf
𝑢 ∈ 𝑈∞

𝑇 ∶ 𝑥 𝑇 = 𝑥𝑔𝑜𝑎𝑙

for ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡). 

Quantitative resilience  𝑟𝑞 = inf
𝑥0, 𝑥𝑔𝑜𝑎𝑙

𝑇𝑁
∗ (𝑥0, 𝑥𝑔𝑜𝑎𝑙)

𝑇𝑀
∗ (𝑥0, 𝑥𝑔𝑜𝑎𝑙)

≤ 1.

How to calculate 𝑟𝑞?
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J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of linear driftless systems”, SIAM Conference on Control and its Applications, 2021.

Quantitative resilience of driftless systems

Nominal reach time 𝑇𝑁∗ 𝑑 = min
ഥ𝑢 ∈ ത𝒰

{ 𝑇 ∶ ത𝐵ത𝑢𝑇 = 𝑑}

for ሶ𝑥 𝑡 = ത𝐵ത𝑢(𝑡) and with  𝑑 = 𝑥𝑔𝑜𝑎𝑙 − 𝑥0. 

Malfunctioning reach time TM
∗ 𝑑 = max

𝑤 ∈ 𝒱
min
𝑢 ∈ 𝒰

𝑇 ≥ 0 ∶ 𝐵𝑢 + 𝐶𝑤 𝑇 = 𝑑

for ሶ𝑥 𝑡 = 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) and with 𝒱 vertices of 𝒲.

Quantitative resilience  𝑟𝑞 = inf
𝑑 ∈ ℝ𝑛

𝑇𝑁
∗ (𝑑)

𝑇𝑀
∗ (𝑑)

≤ 1.



Aerospace Engineering
25

𝑟𝑞 = min
𝑑 ∈ 𝕊

𝑝𝑢𝑟𝑝𝑙𝑒

𝑝𝑢𝑟𝑝𝑙𝑒 + 𝑔𝑟𝑒𝑒𝑛

The Maximax Minimax Quotient Theorem states 
that the maximum occurs for 𝑑 aligned with 𝒞𝒲.

Quantitative resilience of driftless systems

J.-B. Bouvier and M. Ornik, “The Maximax Minimax Quotient Theorem”, Journal of Optimization Theory and Applications, 2022.
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Quantitative resilience of linear systems

𝑇𝑁
∗ 𝑥0 nominal reach time to  0 for ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + ത𝐵ത𝑢 𝑡 .

𝑇𝑀
∗ 𝑥0 malfunctioning reach time to  0 for ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡).

• Optimal inputs are bang-bang.
• Geometrical approach cannot be adapted.
• No closed form solution like in the driftless case.
• Numerous algorithms to compute  𝑇𝑁∗ .
• Algorithms from pursuit-evasion game framework to compute 𝑇M

∗ .

J. Eaton, “An iterative solution to time-optimal control,” Journal of Mathematical Analysis and Applications, 1962.
M. Athans, “The status of optimal control theory and applications for deterministic systems,” IEEE Transactions on Automatic Control, 1966.
Y. Sakawa, “Solution of linear pursuit-evasion games”, SIAM Journal on Control, 1970.
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J.-B. Bouvier and M. Ornik, “Quantitative Resilience of Linear Systems”, European Control Conference 2022.

If ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + ത𝐵ത𝑢(𝑡) is controllable and 𝐴 is Hurwitz,

then 𝑇𝑁∗ 𝑥0 ≥ 2
𝜆𝑚𝑖𝑛
𝑃

𝜆𝑚𝑎𝑥
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑎𝑥
𝑄

𝑥0 𝑃

2𝜆𝑚𝑖𝑛
𝑃 𝑏𝑚𝑎𝑥

𝑃 , 

𝑃 ≻ 0,    Q ≻ 0,   𝑃𝐴 + 𝐴⊤𝑃 = −𝑄,     𝑥 𝑃
2 = 𝑥⊤𝑃𝑥

and     𝑏𝑚𝑎𝑥
𝑃 = max ത𝐵ത𝑢 𝑃 ∶ ത𝑢 ∈ ത𝒰 . 

If ത𝐵 is full-rank,  𝑇𝑁∗ 𝑥0 ≤ 2
𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑖𝑛
𝑄

𝑥0 𝑃

2𝜆𝑚𝑎𝑥
𝑃 𝑏𝑚𝑖𝑛

𝑃 ,

with 𝑏𝑚𝑖𝑛
𝑃 = min ത𝐵ത𝑢 𝑃 ∶ ത𝑢 ∈ 𝜕 ത𝒰 .

ℬ𝒰

Quantitative resilience of linear systems



Aerospace Engineering
29

J.-B. Bouvier and M. Ornik, “Quantitative Resilience of Linear Systems”, European Control Conference 2022.

𝑚𝑖𝑛
𝜆𝑚𝑖𝑛
𝑃 𝜆𝑚𝑖𝑛

𝑄

𝜆𝑚𝑎𝑥
𝑃 𝜆𝑚𝑎𝑥

𝑄 ,
𝑧𝑚𝑖𝑛
𝑃

𝑏𝑚𝑎𝑥
𝑃 ≤ 𝑟𝑞 ≤ 𝑚𝑖𝑛

𝜆𝑚𝑎𝑥
𝑃 𝜆𝑚𝑎𝑥

𝑄

𝜆𝑚𝑖𝑛
𝑃 𝜆𝑚𝑖𝑛

𝑄 ,
𝑧𝑚𝑎𝑥
𝑃

𝑏𝑚𝑖𝑛
𝑃

,

with   𝑧𝑚𝑖𝑛
𝑃 = 𝑚𝑖𝑛 𝑧 𝑃 ∶ 𝑧 ∈ 𝜕𝒵 , 𝑧𝑚𝑎𝑥

𝑃 = 𝑚𝑎𝑥 𝑧 𝑃 ∶ 𝑧 ∈ 𝒵 and   𝑟𝑞 = inf
𝑥0 ∈ ℝ

𝑛

𝑇𝑁
∗ (𝑥0)

𝑇𝑀
∗ (𝑥0)

.

2
𝜆𝑚𝑖𝑛
𝑃

𝜆𝑚𝑎𝑥
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑎𝑥
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑖𝑛
𝑃 𝑧𝑚𝑎𝑥

𝑃 ≤ 𝑇𝑀
∗ 𝑥0 ≤ 2

𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑖𝑛
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑎𝑥
𝑃 𝑧𝑚𝑖𝑛

𝑃

If ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) is resiliently stabilizable, then

,

Quantitative resilience of linear systems
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Extensions of resilience theory

31

Limiting assumptions:

• the nominal mission is to reach a target  𝒯,

• the controller  𝑢(𝑡) has immediate knowledge of the undesirable 
input  𝑤 𝑡 ,

• the nominal dynamics are linear:  ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + ത𝐵ത𝑢(𝑡).
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Resilient trajectory tracking
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Reference trajectory:  ሶ𝑥𝑟𝑒𝑓 𝑡 = 𝐴𝑥𝑟𝑒𝑓 𝑡 + 𝑧𝑟𝑒𝑓 𝑡 with   𝑧𝑟𝑒𝑓 𝑡 ∈ 𝒵𝑟𝑒𝑓.

Initial error correction:
ሶ𝑦 𝑡 = 𝐴𝑦 𝑡 + 𝑧𝜀 𝑡 , 𝑦 0 = 𝑥0 − 𝑥𝑟𝑒𝑓 0 , 𝑧𝜀 𝑡 ∈ 𝒵𝜀 (1. 𝜀)

If  𝒵𝑟𝑒𝑓 ⊕𝒵𝜀 ⊆ 𝒵 and  (1. 𝜀) is stabilizable in a time  𝑡𝑓,
then for all 𝑤, there exists 𝑢𝑤 such that 𝑥 𝑡 = 𝑥𝑟𝑒𝑓(𝑡) for all  𝑡 ≥ 𝑡𝑓.

Malfunctioning system  ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐶𝑤(𝑡) with  𝑥 0 = 𝑥0,
𝑢 𝑡 ∈ 𝒰,  𝑤 𝑡 ∈ 𝒲 and  𝒵 = 𝐵𝒰⊖ (−𝐶𝒲).
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Resilience despite actuation delay
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If there is  𝑥𝑔 ∈ 𝒢 such that  𝔹 𝑥𝑔, 𝜌 ⊆ 𝒢 and 𝑦 𝑇 = 𝑥𝑔,  
then for all  𝑤 ∈ 𝒲 there is 𝑢 ∈ 𝒰 such that  𝑥 𝑇 + 𝜏 ∈ 𝒢,

with  𝜌 = 𝑐

𝜇(𝐴)
𝑒𝜇 𝐴 𝜏 − 1 ,   𝑐 = 𝑚𝑎𝑥 𝐶𝑤 ∶ 𝑤 ∈ 𝒲 ,   

and     𝜇 𝐴 = 𝑚𝑎𝑥 𝜆
𝐴+𝐴⊤

2
.

Actuation delay  𝜏 > 0 such that  ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡, 𝑥 𝑡 − 𝜏 ,𝑤(𝑡 − 𝜏) + 𝐶𝑤(𝑡)
with  𝑥 0 = 𝑥0,  𝑢 𝑡 ∈ 𝒰,  𝑤 𝑡 ∈ 𝒲.

ሶ𝑦 𝑡 = 𝐴𝑦 𝑡 + 𝑧 𝑡 𝑦 0 = 𝑒𝐴𝜏𝑥0 𝑧 𝑡 ∈ 𝒵𝜏 = 𝐵𝒰⊖ −𝑒𝐴𝜏𝐶𝒲

𝒢

𝑥𝑔

𝜌

𝑦 0

𝑥0 𝑥(𝑇 + 𝜏)
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Resilience despite actuation delay
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Reference trajectory:    ሶ𝑥𝑟𝑒𝑓 𝑡 = 𝐴𝑥𝑟𝑒𝑓 𝑡 + 𝑧𝑟𝑒𝑓 𝑡 with   𝑧𝑟𝑒𝑓 𝑡 ∈ 𝒵𝑟𝑒𝑓.

ሶ𝑦 𝑡 = 𝐴𝑦 𝑡 + 𝑧𝜀 𝑡 , 𝑦 0 = 𝑒𝐴𝜏 𝑥0 − 𝑥𝑟𝑒𝑓 0 , 𝑧𝜀 𝑡 ∈ 𝒵𝜀 (2. 𝜀)

If  𝒵𝑟𝑒𝑓 ⊕𝒵𝜀 ⊆ 𝒵𝜏 and  (2. 𝜀) is stabilizable in a time  𝑡𝑓,
then  𝑥 𝑡 −𝑥𝑟𝑒𝑓 (𝑡) ≤ 𝜌 for all  𝑡 ≥ 𝑡𝑓.

Actuation delay  𝜏 > 0 such that  ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡, 𝑥 𝑡 − 𝜏 ,𝑤(𝑡 − 𝜏) + 𝐶𝑤(𝑡)
with  𝑥 0 = 𝑥0,  𝑢 𝑡 ∈ 𝒰,  𝑤 𝑡 ∈ 𝒲.
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Resilience of nonlinear systems
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If  𝑥𝑔𝑜𝑎𝑙 is reachable in a time  𝑇 by (2),
then  𝑥𝑔𝑜𝑎𝑙 is resiliently reachable in time  𝑇 by (1). 

ሶ𝑥 𝑡 = 𝑓 𝑡, 𝑥(𝑡) + 𝑔 𝑡, 𝑥(𝑡) 𝐵𝑢 𝑡 + 𝐶𝑤(𝑡) , 𝑥 0 = 𝑥0, 𝑢 𝑡 ∈ 𝒰, 𝑤 𝑡 ∈ 𝒲 (1)
ሶ𝑥 𝑡 = 𝑓 𝑡, 𝑥(𝑡) + 𝑔 𝑡, 𝑥 𝑡 𝑧(𝑡),                    𝑥 0 = 𝑥0,    𝑧 𝑡 ∈ 𝒵 = 𝐵𝒰⊖ −𝐶𝒲 (2)

Sufficient condition for resilience:

The reverse implication is much more difficult.
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Outline
I. Linear systems with bounded energy

A. Resilient reachability
B. Resilience of driftless systems
C. Control synthesis

II. Linear systems with bounded amplitude
A. Resilient reachability
B. Quantitative resilience of driftless systems
C. Quantitative resilience of linear systems

III. Latest contributions to resilience theory
A. Extensions of resilience theory 
B. Resilience of an orbital inspection mission 
C. Resilience of linear networks 
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Resilience of an orbital inspection mission
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• Target satellite (red)
• Four holding points at 

80m (green)
• Fuel optimal inspection 

trajectory (blue)
• Keep-out sphere (KOS) 

of radius 50m (yellow)

M. Vavrina et al., “Safe rendezvous trajectory design for the Restore-L mission,” 29th AAS/AIAA Space Flight Mechanics Meeting, 2019.
N. Ortolano et al., “Autonomous optimal trajectory planning for orbital rendezvous, satellite inspection, and final approach based on convex optimization,” Journal of 
the Astronautical Sciences, 2021.
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Nominal Clohessy-Wiltshire dynamics
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ሶ𝑋 𝑡 = 𝐴𝑋 𝑡 + 𝑟𝑅𝜃(𝑡) ത𝐵ത𝑢 𝑡 , 𝑋 =

𝑥
𝑦
ሶ𝑥
ሶ𝑦

,

ത𝑢𝑖 𝑡 ∈ [0, 1]

Ω mean orbital rate,    𝑟 thrust-to-mass ratio,     𝑅𝜃(𝑡) rotation matrix.

Camera of the chaser always 
pointing at the target.

J.-B. Bouvier et al., “Resilience of orbital inspections to partial loss of control authority over the chaser satellite,” AAS/AIAA Astrodynamics Specialist Conference, 2022.
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Malfunctioning dynamics
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ሶ𝑋 𝑡 = 𝐴𝑋 𝑡 + 𝑟𝑅𝜃(𝑡)𝐵𝑢 𝑡, 𝑋 𝑡 − 𝜏 ,𝑤(𝑡 − 𝜏) + 𝑟𝑅𝜃(𝑡)𝐶𝑤 𝑡 ,

𝑢𝑖 𝑡 ∈ 0, 1 , 𝑤 𝑡 ∈ [0, 1]

After the loss of control authority over 
thruster no.4 and actuation delay 𝜏:

J.-B. Bouvier et al., “Resilience of orbital inspections to partial loss of control authority over the chaser satellite,” AAS/AIAA Astrodynamics Specialist Conference, 2022.
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(1)    ൝
ሶ𝑋 𝑡 = 𝐴𝑋 𝑡 + 𝑟𝑅𝜃(𝑡)𝐵𝑢 𝑡 + 𝑟𝑅𝜃(𝑡)𝐶𝑤 𝑡

𝑋 0 = 𝑋0, 𝑢 𝑡 ∈ 𝒰, 𝑤 𝑡 ∈ 𝒲

(2)    ൝
ሶ𝑋 𝑡 = 𝐴𝑋 𝑡 + 𝑟𝑅𝜃(𝑡)𝑧 𝑡

𝑋 0 = 𝑋0, 𝑧 𝑡 ∈ 𝒵

(3)    ൝
ሶ𝑋 𝑡 = 𝐴𝑋 𝑡 + 𝑟 𝐵𝑧 𝑡
𝑋 0 = 𝑋0, 𝑧 𝑡 ∈ 𝒵𝑏

undesirable 
inputs

controlled 
inputs

Spacecraft resilience

effective 
inputs

𝒵 = 𝐵𝒰⊖ −𝐶𝒲 = 𝑧 ∈ 𝐵𝒰 ∶ 𝑧 − 𝐶𝑤 ∈ 𝐵𝒰 for all 𝑤 ∈ 𝒲

Polygons 𝐵𝒰 (blue), −𝐶𝒲 (red), their 
Minkowski difference 𝒵 (green) and the 

largest ball 𝒵𝑏 (brown) centered on 0 in 𝒵. 
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Effective inputs on the 
reference trajectory  𝒯𝑟𝑒𝑓.

After the loss of thruster no. 1, the 
set of effective inputs 𝒵 (green)
does not surround the origin.

Spacecraft resilience

The spacecraft can only track  𝒯𝑟𝑒𝑓
after the loss of thruster no. 4 
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At time  𝑡 controller  𝑢(𝑡) has only access to  𝑤(𝑡 − 𝜏) and  𝑋 𝑡 − 𝜏 .

To estimate  𝑋 𝑡 , we use the Léchappé state predictor:
𝑋𝑝 𝑡 = 𝑒𝐴𝜏𝑋 𝑡 − 𝜏 + 𝑡−𝜏

𝑡
𝑒𝐴 𝑡−𝑠 𝑟𝑅𝜃(𝑠) 𝐵𝑢 𝑠 + 𝐶𝑤 𝑠 − 𝜏 𝑑𝑠.

We prove that controller
𝐵𝑢 𝑡 = −𝐶𝑤(𝑡 − 𝜏) + 𝑅𝜃

−1 𝑡 𝑧𝑟𝑒𝑓(𝑡) + 𝑅𝜃
−1(𝑡) 𝐵𝐾 𝑋𝑟𝑒𝑓 𝑡 − 𝑋𝑝(𝑡)

guarantees resilient tracking
𝑋 𝑡 − 𝑋𝑟𝑒𝑓(𝑡) ≤ 𝑚𝑎𝑥 𝑋 0 − 𝑋𝑟𝑒𝑓 0 , 𝜀 .

V. Léchappé et al., “New predictive scheme for the control of LTI systems with input delay and unknown disturbances,” Automatica, 2015. 

Controller design
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Trajectory tracking (red)
of the reference (blue).

Position error.

Reference thrust (blue),
tracking thrust (red) and 

undesirable thrust (orange).

Numerical simulation

Velocity error.

Actuation delay 𝜏 = 0.2𝑠
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Thrust magnitude on the tracking 
trajectory (red), the reference (blue), 
and the undesirable thrust (orange).

Position tracking error

Scenario:𝑤(𝑡) ∈ [0, 1] is bang-bang,
actuation delay 𝜏 = 1𝑠.

Numerical simulation
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Summary of the simulations

With a given actuation delay 𝜏, 
how much undesirable thrust 𝑤
can the tracking handle?
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Outline
I. Linear systems with bounded energy

A. Resilient reachability
B. Resilience of driftless systems
C. Control synthesis

II. Linear systems with bounded amplitude
A. Resilient reachability
B. Quantitative resilience of driftless systems
C. Quantitative resilience of linear systems

III. Latest contributions to resilience theory
A. Extensions of resilience theory 
B. Resilience of an orbital inspection mission 
C. Resilience of linear networks 
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Resilience of linear networks
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A cyberattack on an electric grid causes a loss of control 
over a power generator. Is the network resilient to such an 
attack?

Nominal dynamics at node 𝑖 ∈ 1,𝑁
ሶ𝑥𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + ത𝐵𝑖 ത𝑢𝑖 𝑡 + σ𝐷𝑖,𝑘𝑥𝑘 𝑡 .

After a loss of control authority in node 𝑁,  
ሶ𝑥𝑁 𝑡 = 𝐴𝑁𝑥𝑁 𝑡 + 𝐵𝑁𝑢𝑁 𝑡 + 𝐶𝑁𝑤𝑁(𝑡) + σ𝐷𝑁,𝑘𝑥𝑘 𝑡 .  

Can we still drive all the  𝑥𝑖 to 0?
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𝑋 𝑡 =
𝑥1 𝑡
⋮

𝑥𝑁−1 𝑡
𝐴 =

𝐴1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑁−1

ത𝑢 𝑡 =
ത𝑢1 𝑡
⋮

ത𝑢𝑁−1 𝑡

ത𝐵 =

ത𝐵1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ത𝐵𝑁−1

Network                              ሶ𝑋 𝑡 = 𝐴 + 𝐷 𝑋 𝑡 + ത𝐵ത𝑢 𝑡 + 𝐷−,𝑁𝑥𝑁 𝑡

Malfunctioning node     ሶ𝑥𝑁 𝑡 = 𝐴𝑁𝑥𝑁 𝑡 + 𝐵𝑁𝑢𝑁 𝑡 + 𝐷𝑁,−𝑋 𝑡 + 𝐶𝑁𝑤𝑁 𝑡

Framework

48

𝐷 =

0 𝐷1,2
𝐷2,1 ⋱

… 𝐷1,𝑁−1
⋱ ⋮

⋮ ⋱
𝐷𝑁−1,1 …

⋱ 𝐷𝑁−2,𝑁−1
𝐷𝑁−1,𝑁−2 0

𝐷1,𝑁
⋮

𝐷𝑁−2,𝑁
𝐷𝑁−1,𝑁

= 𝐷−,𝑁

𝐷𝑁,− = 𝐷𝑁,1 … 𝐷𝑁,𝑁−2 𝐷𝑁,𝑁−1 0
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Resilient node
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If the isolated malfunctioning node is resilient, i.e.,
if  ሶ𝑥𝑁 𝑡 = 𝐴𝑁𝑥𝑁 𝑡 + 𝐵𝑁𝑢𝑁 𝑡 + 𝐶𝑁𝑤𝑁(𝑡) is resilient

and the initial network was controllable,
then the network is resilient.

Toy example: two submarines connected with springs.
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Non-resilient node
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Non-resilience:  𝐶𝑁𝒲𝑁 ⊈ 𝐵𝑁𝒰𝑁, i.e., some  𝑤𝑁 cannot be counteracted.
Then, 𝑥𝑁 cannot be resiliently driven to 0 by  𝑢𝑁.

To prevent  𝑥𝑁 from diverging, we assume that  𝐴𝑁 is Hurwitz.
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Non-resilient node
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If  𝐴𝑁 is Hurwitz, then

𝑥𝑁 𝑇 𝑃𝑁 ≤ 𝑒−𝛼𝑁𝑇 𝑥𝑁 0 𝑃𝑁 +න
0

𝑇

𝑒𝛼𝑁𝑡 𝑧𝑚𝑎𝑥
𝑃𝑁 + 𝐷𝑁,−𝑋 𝑡

𝑃𝑁
𝑑𝑡 ,

with   𝑃𝑁 ≻ 0 such that  𝐴𝑁⊤𝑃𝑁 + 𝑃𝑁𝐴𝑁 = −𝑄𝑁 ≺ 0,    𝛼𝑁 =
𝜆𝑚𝑖𝑛
𝑄𝑁

2𝜆𝑚𝑎𝑥
𝑃𝑁

> 0,  

and   𝑧𝑚𝑎𝑥
𝑃𝑁 = max min 𝐶𝑁𝑤𝑁 + 𝐵𝑁𝑢𝑁 𝑃 ∶ 𝑢𝑁 ∈ 𝒰𝑁 ∶ 𝑤𝑁 ∈ 𝒲𝑁 > 0. 
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Impact of a non-resilient node
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If 𝐴𝑁 and 𝐴 + 𝐷 are Hurwitz and  ത𝐵 is full rank, then

𝑋 𝑡 𝑃 ≤
𝛾𝑧𝑚𝑎𝑥

𝑃𝑁 − 𝛼𝑁𝑏𝑚𝑖𝑛
𝑃

𝛼𝛼𝑁 − 𝛾𝛾𝑁
+ ℎ1𝑒

𝑟1−𝛼𝑁 𝑡 + ℎ2𝑒
𝑟2−𝛼𝑁 𝑡 ,

where  𝑏𝑚𝑖𝑛
𝑃 = min ത𝐵ത𝑢 𝑃 ∶ ത𝑢 ∈ 𝜕 ത𝒰 > 0 is the minimal guaranteed control.
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If 𝐴𝑁 and 𝐴 + 𝐷 are Hurwitz,  ത𝐵 is full rank,  𝛼𝛼𝑁 ≥ 𝛾𝛾𝑁 and 𝛾𝑧𝑚𝑎𝑥
𝑃𝑁 < 𝛼𝑁𝑏𝑚𝑖𝑛

𝑃 ,
then the network  𝑋 is stabilizable in finite time.

𝛼 =
𝜆𝑚𝑖𝑛
𝑄

2𝜆𝑚𝑎𝑥
𝑃 internal stability,               𝛾 = 𝐷−,𝑁 𝑃

𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑃𝑁

coupling strength,

𝑏𝑚𝑖𝑛
𝑃 = min ത𝐵ത𝑢 𝑃 ∶ ത𝑢 ∈ 𝜕 ത𝒰 minimal guaranteed control,

𝑧𝑚𝑎𝑥
𝑃𝑁 = max min 𝐶𝑁𝑤𝑁 + 𝐵𝑁𝑢𝑁 𝑃 ∶ 𝑢𝑁 ∈ 𝒰𝑁 ∶ 𝑤𝑁 ∈ 𝒲𝑁 worst undesirable input.

Impact of a non-resilient node
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Conclusion

54

• We established analytical conditions to verify whether autonomous 
systems are resilient to a loss of authority over some of their actuators.

• We quantified the resilience of these systems by comparing the 
minimal reach times for the initial and the malfunctioning systems.

• We extended resilience theory to encompass trajectory tracking, 
actuation delay and nonlinear dynamics.

• We applied these extensions to an orbital inspection mission.

• We derived partial resilience conditions for linear networks.
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Bounding quantitative resilience

57

J.-B. Bouvier and M. Ornik, Quantitative Resilience of Linear Systems, European Control Conference 2022

Actuators:
• Central heating/AC                              𝑞ℎ − 𝑞𝐴𝐶
• Door/window of each room              𝑞𝑑 − 𝑞𝑤
• Sunshades/heat loss of each room  𝑞𝑆 − 𝑞𝑙

Objective: T1 = T2 = T3 = Tgoal

𝑥 = 𝑇 − 𝑇𝑔𝑜𝑎𝑙 𝑥0 = 0.8∘𝐶 0.7∘𝐶 0.9∘𝐶

35.5𝑠 ≤ 𝑇𝑁
∗ 𝑥0 = 42.5𝑠 ≤ 54.1𝑠 53𝑠 ≤ 𝑇𝑀

∗ 𝑥0 = 110.5𝑠 ≤ 135𝑠

Worst-case time increase by a factor 𝑇𝑀
∗ (𝑥0)

𝑇𝑁
∗ (𝑥0)

= 2.6 ≤ 3.8 for this 𝑥0. 

0.097 ≤ 𝑟𝑞 ≤ 2.79 yields a worst-case time increase by a factor 
1

0.097
= 10.3 over all 𝑥0.
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Quantitative Resilience Framework
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Maximize ሶ𝑥(𝑡) ? Maximize ⟨ ሶ𝑥(𝑡), 𝑥𝑔𝑜𝑎𝑙−𝑥 𝑡 ⟩ ? Assume that 𝑤 is constant ? Assume that 
𝑤 is the worst bang-bang input?

“Target Function Approach to Linear Pursuit Problems”  by W. Borgest and P. Varaiya

Closed-loop capture: controller 𝑢∗(𝑡) only knows 𝑤∗( 0, 𝑡 ) . For time optimal, only 
general technique is to solve Isaac’s main equation: differential game equivalent of 
HJB equation (usually intractable PDE). Give sub-optimal solutions
Such a 𝑇𝑀

∗ cannot be compared with time-optimal 𝑇𝑁
∗

Open-loop capture: controller knows 𝑤∗ in advance

.
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J.-B. Bouvier and M. Ornik, “The Maximax Minimax Quotient Theorem”, Journal of Optimization Theory and Applications, 2022.

The Maximax Minimax Quotient Theorem

𝑟𝑋,𝑌 𝑑 =
max

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌
𝑥 + 𝑦 ∶ 𝑥 + 𝑦 ∈ ℝ+𝑑

min
𝑥 ∈ 𝑋

max
𝑦 ∈ 𝑌

𝑥 + 𝑦 ∶ 𝑥 + 𝑦 ∈ ℝ+𝑑
𝑓𝑜𝑟 𝑑 ∈ ℝ𝑛, 𝑑 = 1.

If 𝑋 and 𝑌 are two 
symmetric polytopes in ℝ𝑛

with 𝑋 ⊂ 𝑌∘, 𝜕𝑋 = {−𝑥, 𝑥}
and dim 𝑌 = 𝑛, then 
max
𝑑 =1

𝑟𝑋,𝑌 𝑑 = 𝑟𝑋,𝑌(𝑥) .

https://www.youtube.com
/watch?v=rjKzHyDJX40

https://www.youtube.com/watch?v=rjKzHyDJX40
https://www.youtube.com/watch?v=rjKzHyDJX40
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If system  ሶ𝑥 𝑡 = ത𝐵ത𝑢(𝑡) is resilient to the loss of a single column 𝐶, then  
𝑟𝑞 = 𝑚𝑖𝑛 𝑟 𝐶 , 𝑟(−𝐶) .

J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of linear driftless systems”, SIAM Conference on Control and its Applications, 2021.
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System  ሶ𝑥 𝑡 = ത𝐵ത𝑢(𝑡) is resilient to the loss of a single column  𝐶 if 
and only if it is controllable, 𝑟(𝐶) ∈ 0,1 and 𝑟 −𝐶 ∈ 0,1 ,

where  𝑟 𝐶 =
𝑤𝑚𝑖𝑛+𝛼+

𝑤𝑚𝑎𝑥+𝛼+
, 𝑟 −𝐶 =

𝑤𝑚𝑎𝑥−𝛼−

𝑤𝑚𝑖𝑛−𝛼−
,  𝛼± =max

𝑢 ∈ 𝒰
𝛼 ∶ 𝐵𝑢 = ±𝛼𝐶 and

𝒲 = [𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥].

Quantitative resilience of driftless systems
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ሶ𝑥 𝑘 𝑡 = ത𝐵ത𝑢(𝑡) ത𝑢 ∈ ഥ𝑈∞ 𝑥 0 = 𝑥0 𝑥(𝑙) 0 = 0 for 𝑙 ∈ 1, 𝑘 − 1 .
Nominal reach time 𝑇𝑘, 𝑁

∗ 𝑑 = inf
ഥ𝑢 ∈ ഥ𝑈∞

{ 𝑇 ∶ 𝑥 𝑇 − 𝑥0 = 𝑑}.

ሶ𝑥 𝑘 𝑡 = 𝐵𝑢 𝑡 + 𝐶𝑤(𝑡) 𝑢 ∈ 𝑈∞ 𝑤 ∈ 𝑊∞ 𝑥 0 = 𝑥0 𝑥(𝑙) 0 = 0 for 𝑙 ∈ 1, 𝑘 − 1 .
Malfunctioning reach time  𝑇𝑘, 𝑀

∗ 𝑑 = sup
𝑤 ∈𝑊∞

inf
𝑢 ∈ 𝑈∞

{ 𝑇 ∶ 𝑥 𝑇 − 𝑥0 = 𝑑} .

If ሶ𝑥 = ത𝐵ത𝑢 is controllable, so is     ሶ𝑥 𝑘 = ത𝐵ത𝑢 and 𝑇𝑘, 𝑁
∗ 𝑑 = 𝑘 𝑘! 𝑇𝑁

∗(𝑑).
If ሶ𝑥 = 𝐵𝑢 + 𝐶𝑤 is resilient, so is ሶ𝑥(𝑘) = 𝐵𝑢 + 𝐶𝑤 and  𝑇𝑘, 𝑀

∗ 𝑑 = 𝑘 𝑘! 𝑇𝑀
∗ (𝑑).

Then,  𝑟𝑘, 𝑞 = inf
𝑑 ∈ ℝ𝑛

𝑇𝑘, 𝑁
∗ (𝑑)

𝑇𝑘, 𝑀
∗ (𝑑)

= 𝑘 𝑟𝑞 .            For a resilient system,  𝑟𝑞 ∈ (0,1],  so  𝑟𝑘, 𝑞 ≥ 𝑟𝑞 .

J.-B. Bouvier, K. Xu and M. Ornik, “Quantitative resilience of generalized integrators”, IEEE Transactions on Automatic Control, 2023.

Quantitative resilience of driftless systems
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Non-resilient node
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If  𝐴 + 𝐷 is Hurwitz and  ത𝐵 is full rank,

𝑋 𝑡 𝑃 ≤
𝛾𝑧𝑚𝑎𝑥

𝑃𝑁 − 𝛼𝑁𝑏𝑚𝑖𝑛
𝑃

𝛼𝛼𝑁 − 𝛾𝛾𝑁
+ ℎ1𝑒

𝑟1−𝛼𝑁 𝑡 + ℎ2𝑒
𝑟2−𝛼𝑁 𝑡

with 𝑃 ≻ 0 such that 𝐴 + 𝐷 ⊤𝑃 + 𝑃(𝐴 + 𝐷) = −𝑄 ≺ 0,   𝛼 =
𝜆𝑚𝑖𝑛
𝑄

2𝜆𝑚𝑎𝑥
𝑃 ,   𝛾 =

𝐷−,𝑁 𝑃

𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑃𝑁

, 𝛾𝑁 = 𝐷𝑁,− 𝑃

𝜆𝑚𝑎𝑥
𝑃𝑁

𝜆𝑚𝑖𝑛
𝑃 and    𝑏𝑚𝑖𝑛

𝑃 = min ത𝐵ത𝑢 𝑃 ∶ ത𝑢 ∈ 𝜕 ത𝒰 .
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𝑥0 𝑥𝑔𝑜𝑎𝑙

𝑇𝑁 = 20𝑠

𝑇𝑀 = 40𝑠
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