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Motivation

Loss of control authority over
~ an actuator, that now
—_ produces uncontrolled and

_ possibly undesirable inputs.

Sensors measuring in real-
time all actuators inputs.

/%

Can we still stabilize the system?

Nauka module (left) docked to the ISS. (Image credit: Thomas
Pesquet/ESA/NASA)
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Preliminaries

OO PBUD))  x(0)=x, u(t)edl.

Loss of control authority over some actuators of B :

separate controls u from undesirable inputs w asu = (u, w)
and B = [B (C].

x(t) = Ax(t) + Bu(t) + Cw(t), x(0)=xy u(t)eU, w()eWw.

The system is resiliently stabilizable if for all x, € R™ and all
w(-) € W there existsu(-) e U and T > 0 such that x(T) = 0.
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Resilience of Linear Systems

Let Z=BUO (—CW) = {z€ BU: z— Cw € BU for all w € W} the
Minkowski difference of BU = {Bu:u € U} and —CW = {—Cw : w € W}.

Z IS the set of controls remaining after counteracting any undesirable
INput Cw.

l‘l“’]flol |

=[-1,1]* and W =[-1,1]:
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Resilience of Linear Systems

Hajek's Duality theorem: x(t) = Ax(t) + Bu(t) + Cw(t) is resiliently
stabilizable it and only if x(t) = Ax(t) + z(t) Is stabilizable, with z(t) € Z.

Resilient stabilizability is transformed into bounded stabilizability.

Using Brammer's controllability theory we obtain a sufficient
condition for resilient stabilizability:

If Re(1(4)) <0 and 0 € int(Z), the system is resiliently stabilizable.

O. Hajek, Duality for differential games and optimal control, Mathematical Systems Theory, 1974.
R. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM Journal on Control, 1972.
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Quantitative Resilience

Resilience only guarantees reachability despite a loss of control
authority. It does not quantify the impact of this malfunction.

rq = i ~ 0.08
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How to evaluate the quantitative resilience r, of the system?
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Quantitative Resilience

Nominal reach time Ty (x,) = _irelfU{ T:x(T) = 0} for x(t) = Ax(t) + Bu(t)
u

and U = [-1,1]™tP.

Malfunctioning reach time Ty (x;) = sup { 1nf { T:x(T) = 0}}

wew

for x(t) = Ax(t) + Bu(t) + Cw(t), U =[—1, 1]’" and W =[-1,1]P.

Ratio of reach times t(x,) = TuX0) £ xo € R™.

Ty (Xo)
[ ] [ ] [ ] [ ] T 1
Quantitative resilience [, = inf N(xo) _ <1
Xo€ R™ Ty(xX0) su%n t(xo)
X €
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Framework

For the nominal reach time Ty(xp), the time-optimal control input u* is
bang-bang, but Ty has Nno closed-form expression.

For the malfunctioning reach time Ty (x,), the framework is even more
complex due to the interactions between u and w.

How to find u*(t,w(t))? For what w(t)?

Maximize x(t)? Maximize {(x(t), —x(t))? Assume that w is constant?

But we need u* and w* to be both bang-bang to make Ty (x,) time-optimal
and comparable to Ty(xy).

JP. LaSalle, Time optimal control systems, Proceedings of the National Academy of Sciences, 1959.
L. Neustadt, Synthesizing time optimal control systems, Journal of Mathematical Analysis and Applications, 1960.
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Framework

Closed-loop capture: u*(t) knows w*([0, t]) and solves Isaac’s main
equation: differential game equivalent of HIB equation (usually
INntractable PDE). Instead, they give sub-optimal solutions, their TM cannot
be compared with time-optimal Ty.

Open-loop capture: controller knows w* in advance by assuming thatw is
the worst bang-bang input.

We follow Sakawa's pursuit-evasion game framework so that both Ty
and Ty, are time-optimal. They are both achieved bang-bang inputs but
have no closed-form solutions.

Y. Sakawa, Solution of linear pursuit-evasion games, SIAM Journal on Control, 1970.
W. Borgest and P. Varaiya, Target Function Approach to Linear Pursuit Problems, IEEE Transactions on Automatic Control, 1971.
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Bounding Quantitative Resilience

If x = Ax + Bu is stabilizable and 4 is Hurwitz, —

b 12 ol y
then{Ty(xp) = 2 5 In (1 + max 2 P),
A9 220 . bE
2
P>0, Q>0, PA+A'P=-Q, ||x||P = xTPx
and bl .= max{||Bﬂ||P U E U} e %

5 * Mnax AS’Lin“x(’”P
If B is full-rank, Ty(xg) < 2 In| 1+
29 22P .bP.
min max=min

with b} .. = min{|IEﬂI|P U € aﬂ}.
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Bounding Quantitative Resilience

If x = Ax + Bu + Cw s resiliently stabilizable, then

A Al A x
5 Amin ln<1+ max | 0||p>< I (x) <2 Amaxln<1+ Anin (;np),

P P P
/11Qnax leminz‘max Zlmaxzmin

min

with z;.. = min{|IZI|P : 7 € 62’} and z) .= max{|IZI|P 7 € Z}.

Recall thatr, = inf M
Xg € RN M(xO)

P Q P P Q P
min (Amm/lmm Zmin) < rq < min (Amax/lmax : Zmax) .

Af x = Ax + Bu + Cw s resiliently stabilizable, then

Ay Dmax AR 22 " bF

max min’tmin ~min
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Temperature Control System

Gl G2 g3 outside

% NI/ N7 NTE
qi1 qi2 qi3

7jg()a[ < 1T o L € T3 << 7jg()al
gl q12 423 93¢

/,/

qdd3

qdl qd2 ha]]way

mCyTy = qg1+q12 + Qractnac + Qawttaw + Qsitis
mCyTy = —q12 + q23 + Quactnac + Qawldw + Qs1usy
mC,T3 = —q3 + qg3 + QnacUnac + Qawligy + Qsius,
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Actuators;

« Central heating/AC g, — qic= QnacUnac
« Door/window 9q — Guw= 0gwlaw
« Sunshades/heatloss qg — q; = Qg ug;

Objective: Ty =T, =T3 =T

goal-
0.8°C
T2 (t) _ Tgoal xo = | 0.7°C
T3(t) — Tyoul 0.9°C

x(t) = Ax(t) + Bu(t)

Tl (t) o Tgoal
x(t) =
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Temperature Control System

Loss of control over door 2.

Numerical computation of Ty(xy) and Ty (x): red line

Analytical bounds for 1000 random pairs (P, Q) : green and black dots
and for the ellipsoid approximations of BU and Z: green and black lines

150 o < .
35s < Ty(xg) = 42s < 54s 53s < Ty (xo) = 110s < 135s. . . . .
100 |
Ty (x
t(xy) = ”f( 0) _56<38 @
TN(xO) .|_§

Rooms can take up to 2.6 times longer to reach Tyoal from x,. 50— —

0.097 <1, <2.79
1 . Pooo? o® o800 o T L
From any x, they can take up to —- = 10.3 times longer. 0 S God &0 B0 40w
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Conclusion and Future Work

We established:

« sufficient conditions for resilient stabilizability of linear systems with
bounded inputs;

 bounds on the nominal and malfunctioning reach times to quantify
resilience of linear systems.

We will work on

 removing the full-rank requirement of B from resilience conditions;
* necessary and sufficient conditions for resilience;

* resilience of networks to partial loss of control authority.
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Thank you for your attention
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