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Motivation

Loss of control authority over 
an actuator, that now 
produces uncontrolled and 
possibly undesirable inputs.

Sensors measuring in real-
time all actuators inputs.

Can we still stabilize the system?

2

Nauka module (left) docked to the ISS. (Image credit: Thomas 
Pesquet/ESA/NASA)
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Preliminaries

ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + ത𝐵ത𝑢(𝑡),      𝑥 0 = 𝑥0,     ത𝑢(𝑡) ∈ ഥ𝑈. 

Loss of control authority over some actuators of ത𝐵 :
separate controls  𝑢 from undesirable inputs  𝑤 as ത𝑢 = 𝑢,𝑤
and ത𝐵 = [𝐵 𝐶].
ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡),      𝑥 0 = 𝑥0,    𝑢 𝑡 ∈ 𝑈, 𝑤(𝑡) ∈ 𝑊.

The system is resiliently stabilizable if for all 𝑥0 ∈ ℝ𝑛 and all 
𝑤(⋅) ∈ 𝑊 there exists 𝑢(⋅) ∈ 𝑈 and 𝑇 > 0 such that 𝑥(𝑇) = 0. 
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Resilience of Linear Systems

Let  𝒵 = 𝐵𝒰⊝ (−𝐶𝒲) = 𝑧 ∈ 𝐵𝒰: 𝑧 − 𝐶𝑤 ∈ 𝐵𝒰 fo𝑟 all 𝑤 ∈ 𝒲 the 
Minkowski difference of 𝐵𝒰 = 𝐵𝑢 ∶ 𝑢 ∈ 𝒰 and  −𝐶𝒲 = −𝐶𝑤 ∶ 𝑤 ∈ 𝒲 .
𝒵 is the set of controls remaining after counteracting any undesirable 
input 𝐶𝑤.

𝐵 =
1 0
0 1

1 0
0 1

, 𝐶 =
1
0

,

𝒰 = −1, 1 4 and  𝒲 = [−1, 1] :
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Resilience of Linear Systems

Hájek’s Duality theorem: ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡) is resiliently 
stabilizable if and only if ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑧(𝑡) is stabilizable, with 𝑧(𝑡) ∈ 𝒵.

Resilient stabilizability is transformed into bounded stabilizability.
Using Brammer’s controllability theory we obtain a sufficient 
condition for resilient stabilizability:

If 𝑅𝑒 𝜆 𝐴 ≤ 0 and 0 ∈ 𝑖𝑛𝑡(𝒵), the system is resiliently stabilizable.

O. Hájek, Duality for differential games and optimal control, Mathematical Systems Theory, 1974.
R. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM Journal on Control, 1972.
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Quantitative Resilience
Resilience only guarantees reachability despite a loss of control 
authority. It does not quantify the impact of this malfunction.

How to evaluate the quantitative resilience 𝒓𝒒 of the system?
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Quantitative Resilience

Nominal reach time 𝑇𝑁∗ 𝑥0 = inf
ഥ𝑢 ∈ ഥ𝑈

{ 𝑇: 𝑥 𝑇 = 0} for ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + ത𝐵ത𝑢(𝑡)

and ഥ𝑈 = −1, 1 𝑚+𝑝.

Malfunctioning reach time TM
∗ 𝑥0 = sup

𝑤 ∈𝑊
{ inf
𝑢 ∈ 𝑈

𝑇: 𝑥 𝑇 = 0 }

for   ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡) + 𝐶𝑤(𝑡),    𝑈 = −1, 1 𝑚 and   𝑊 = −1, 1 𝑝.

Ratio of reach times  𝑡 𝑥0 =
𝑇𝑀
∗ (𝑥0)

𝑇𝑁
∗ (𝑥0)

for  𝑥0 ∈ ℝ𝑛. 

Quantitative resilience  𝑟𝑞 = inf
𝑥0∈ ℝ𝑛

𝑇𝑁
∗ (𝑥0)

𝑇𝑀
∗ (𝑥0)

=
1

sup
𝑥0 ∈ ℝ𝑛

𝑡(𝑥0)
≤ 1.
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Framework

For the nominal reach time 𝑇𝑁∗ 𝑥0 , the time-optimal control input ത𝑢∗ is 
bang-bang, but 𝑇𝑁∗ has no closed-form expression.

For the malfunctioning reach time 𝑇M
∗ 𝑥0 , the framework is even more 

complex due to the interactions between 𝑢 and 𝑤. 
How to find 𝑢∗(𝑡, 𝑤(𝑡))? For what 𝑤(𝑡)? 
Maximize ሶ𝑥(𝑡)? Maximize ⟨ ሶ𝑥(𝑡), −𝑥 𝑡 ⟩? Assume that 𝑤 is constant?

But we need 𝑢∗ and 𝑤∗ to be both bang-bang to make 𝑇M
∗ 𝑥0 time-optimal 

and comparable to 𝑇N
∗ 𝑥0 .

JP. LaSalle, Time optimal control systems, Proceedings of the National Academy of Sciences, 1959.
L. Neustadt, Synthesizing time optimal control systems, Journal of Mathematical Analysis and Applications, 1960.
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Closed-loop capture: 𝑢∗(𝑡) knows 𝑤∗( 0, 𝑡 ) and solves Isaac’s main 
equation: differential game equivalent of HJB equation (usually 
intractable PDE). Instead, they give sub-optimal solutions, their 𝑇𝑀∗ cannot 
be compared with time-optimal 𝑇𝑁∗ .

Open-loop capture: controller knows 𝑤∗ in advance by assuming that 𝑤 is 
the worst bang-bang input.

We follow Sakawa’s pursuit-evasion game framework so that both 𝑇𝑁∗

and 𝑇M
∗ are time-optimal. They are both achieved bang-bang inputs but 

have no closed-form solutions.

.

Framework

Y. Sakawa, Solution of linear pursuit-evasion games, SIAM Journal on Control, 1970.
W. Borgest and P. Varaiya, Target Function Approach to Linear Pursuit Problems, IEEE Transactions on Automatic Control, 1971.
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If ሶ𝑥 = 𝐴𝑥 + ത𝐵ത𝑢 is stabilizable and 𝐴 is Hurwitz,

then 𝑇𝑁∗ 𝑥0 ≥ 2
𝜆𝑚𝑖𝑛
𝑃

𝜆𝑚𝑎𝑥
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑎𝑥
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑖𝑛
𝑃 𝑏𝑚𝑎𝑥

𝑃 , 

𝑃 ≻ 0,    Q ≻ 0,   𝑃𝐴 + 𝐴⊤𝑃 = −𝑄,     𝑥
𝑃

2
= 𝑥⊤𝑃𝑥

and     𝑏𝑚𝑎𝑥
𝑃 = max ത𝐵ത𝑢

𝑃
∶ ത𝑢 ∈ ത𝒰 . 

If ത𝐵 is full-rank,  𝑇𝑁∗ 𝑥0 ≤ 2
𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑖𝑛
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑎𝑥
𝑃 𝑏𝑚𝑖𝑛

𝑃

with 𝑏𝑚𝑖𝑛
𝑃 = m𝑖𝑛 ത𝐵ത𝑢

𝑃
∶ ത𝑢 ∈ 𝜕 ത𝒰 .

𝐵𝒰

Bounding Quantitative Resilience
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𝑚𝑖𝑛
𝜆𝑚𝑖𝑛
𝑃 𝜆𝑚𝑖𝑛

𝑄

𝜆𝑚𝑎𝑥
𝑃 𝜆𝑚𝑎𝑥

𝑄 ,
𝑧𝑚𝑖𝑛
𝑃

𝑏𝑚𝑎𝑥
𝑃 ≤ 𝑟𝑞 ≤ 𝑚𝑖𝑛

𝜆𝑚𝑎𝑥
𝑃 𝜆𝑚𝑎𝑥

𝑄

𝜆𝑚𝑖𝑛
𝑃 𝜆𝑚𝑖𝑛

𝑄 ,
𝑧𝑚𝑎𝑥
𝑃

𝑏𝑚𝑖𝑛
𝑃

.

Recall that 𝑟𝑞 = inf
𝑥0 ∈ ℝ

𝑛

𝑇𝑁
∗ (𝑥0)

𝑇𝑀
∗ (𝑥0)

. If ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤 is resiliently stabilizable, then

2
𝜆𝑚𝑖𝑛
𝑃

𝜆𝑚𝑎𝑥
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑎𝑥
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑖𝑛
𝑃 𝑧𝑚𝑎𝑥

𝑃 ≤ 𝑇𝑀
∗ 𝑥0 ≤ 2

𝜆𝑚𝑎𝑥
𝑃

𝜆𝑚𝑖𝑛
𝑄 𝑙𝑛 1 +

𝜆𝑚𝑖𝑛
𝑄

| 𝑥0 |𝑃

2𝜆𝑚𝑎𝑥
𝑃 𝑧𝑚𝑖𝑛

𝑃

If ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤 is resiliently stabilizable, then

,

Bounding Quantitative Resilience

with 𝑧𝑚𝑖𝑛
𝑃 = m𝑖𝑛 𝑧

𝑃
∶ 𝑧 ∈ 𝜕𝒵 and 𝑧𝑚𝑎𝑥

𝑃 = max 𝑧
𝑃
∶ 𝑧 ∈ 𝒵 . 
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Temperature Control System
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𝑚𝐶𝑝 ሶ𝑇1 = 𝑞𝑔1+𝑞12 + 𝑄ℎ𝐴𝐶𝑢ℎ𝐴𝐶 + 𝑄𝑑𝑤𝑢𝑑𝑤
1 + 𝑄𝑆𝑙𝑢𝑆𝑙

1

𝑚𝐶𝑝 ሶ𝑇2 = −𝑞12 + 𝑞23 + 𝑄ℎ𝐴𝐶𝑢ℎ𝐴𝐶 + 𝑄𝑑𝑤𝑢𝑑𝑤
2 + 𝑄𝑆𝑙𝑢𝑆𝑙

2

𝑚𝐶𝑝 ሶ𝑇3 = −𝑞23 + 𝑞𝑔3 + 𝑄ℎ𝐴𝐶𝑢ℎ𝐴𝐶 + 𝑄𝑑𝑤𝑢𝑑𝑤
3 + 𝑄𝑆𝑙𝑢𝑆𝑙

3

Actuators:
• Central heating/AC       𝑞ℎ − 𝑞𝐴𝐶= 𝑄ℎ𝐴𝐶𝑢ℎ𝐴𝐶
• Door/window                𝑞𝑑 − 𝑞𝑤= 𝑄𝑑𝑤𝑢𝑑𝑤
• Sunshades/heat loss    𝑞𝑆 − 𝑞𝑙 = 𝑄𝑆𝑙𝑢𝑆𝑙

Objective: T1 = T2 = T3 = Tgoal.

𝑥(𝑡) =

𝑇1(𝑡) − 𝑇𝑔𝑜𝑎𝑙
𝑇2(𝑡) − 𝑇𝑔𝑜𝑎𝑙
𝑇3(𝑡) − 𝑇𝑔𝑜𝑎𝑙

𝑥0 =
0.8℃
0.7℃
0.9℃

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + ത𝐵ത𝑢 𝑡
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𝑡 𝑥0 =
𝑇𝑀
∗ (𝑥0)

𝑇𝑁
∗(𝑥0)

= 2.6 ≤ 3.8

Rooms can take up to 2.6 times longer to reach 𝑇𝑔𝑜𝑎𝑙 from 𝑥0.

0.097 ≤ 𝑟𝑞 ≤ 2.79

From any 𝑥0 they can take up to 1

0.097
= 10.3 times longer.

Loss of control over door 2. 
Numerical computation of 𝑇𝑁∗ 𝑥0 and 𝑇𝑀

∗ 𝑥0 :              red line
Analytical bounds for 1000 random pairs (𝑃, 𝑄) :        green and black dots
and for the ellipsoid approximations of ത𝐵 ത𝒰 and 𝒵: green and black lines

35𝑠 ≤ 𝑇𝑁
∗ 𝑥0 = 42𝑠 ≤ 54𝑠 53𝑠 ≤ 𝑇𝑀

∗ 𝑥0 = 110𝑠 ≤ 135𝑠.

Temperature Control System
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We established:
• sufficient conditions for resilient stabilizability of linear systems with 

bounded inputs;
• bounds on the nominal and malfunctioning reach times to quantify 

resilience of linear systems.

We will work on
• removing the full-rank requirement of 𝐵 from resilience conditions; 
• necessary and sufficient conditions for resilience;
• resilience of networks to partial loss of control authority.

Conclusion and Future Work
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Thank you for your attention
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