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Motivating example: story

Figure 1: SuBlue WhiteShark Max underwater robot1

Imagine if the circled thruster got damaged and produces undesirable
uncontrolled inputs.

Can the robot still reach its target ?

1
https://www.roboticgizmos.com/whiteshark-max-underwater-robot/
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Motivating example: model

Underwater robot

u1
u2

u3

Figure 2: Underwater robot model

ẋ = Ax+ B̄ū x(0) = x0,

with ū =

u1u2
u3

 .
Scenario: After an accident the robot loses control authority over u3,
now producing undesirable inputs renamed w = u3. The remaining

controlled inputs are u =
[
u1 u2

]>
and we split B̄ =

[
B C

]
, so that

ẋ = Ax+Bu+ Cw x(0) = x0.
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Problem statement

Assumption: The undesirable input w is measured in real-time.

Definition 1

The target G is resiliently reachable at time T from x0 if for all
undesirable input w ∈W , there exists a control law uw ∈ U such that
x(T ) ∈ G.

Problem: Is the target G resiliently reachable at time T from x0?

Remark: Since w is measured, the control law can depend on the
current and past undesirable input w, but not on the future values of w.
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Limitations of current approaches

Actuator failure considers actuator performing with a reduced
magnitude or with a fixed unknown amplitude, e.g. Tang et al.2,
Wang and Wen3.

Robust control aims at strong reachability: a control law working
for all undesirable inputs, e.g. Bertsekas and Rhodes4, Rakovic et
al.5.

Reachability studies of Marzollo and Pascoletti6 and Mitchell and
Tomlin7 focused on numerical approaches.

2Tang, Tao, and Joshi, “Adaptive actuator failure compensation for nonlinear MIMO systems with an
aircraft control application”.

3Wang and Wen, “Adaptive actuator failure compensation control of uncertain nonlinear systems with
guaranteed transient performance”.

4Bertsekas and Rhodes, “On the Minimax Reachability of Target Sets and Target Tubes”.
5Raković et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”.
6Marzollo and Pascoletti, “On the reachability of a given set under disturbances”.
7Mitchell and Tomlin, “Overapproximating Reachable Sets by Hamilton-Jacobi Projections”.
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Framework

The controls and the undesirable inputs are square-integrable:

U =
{
u ∈ L2

(
[0, T ],R2

)
: ‖u‖L2 ≤ 1

}
W =

{
w ∈ L2

(
[0, T ],R

)
: ‖w‖L2 ≤ 1

}
.

The L2-norm is

‖u‖2L2
=

∫ T

0
‖u(t)‖2dt.

The target is a ball of radius ε > 0 centered around xgoal:

G =
{
x ∈ R2 : ‖x− xgoal‖ ≤ ε

}
.

The unit circle in R2 is denoted by U =
{
x ∈ R2 : ‖x‖ = 1

}
.
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Preliminaries

The work of Delfour and Mitter8 derived an analytical reachability
condition for the dynamics x(T ) = s+ S(u) +R(w).

Proposition 1 (Delfour and Mitter)

G is resiliently reachable at time T from x0 if and only if

sup
‖x∗‖(R2)∗=1

{
x∗(s− xgoal)− ‖S∗x∗‖U∗ + ‖R∗x∗‖W ∗ − ε

}
≤ 0.

Highly abstract condition, due to dual terms denoted with a star.

8Delfour and Mitter, “Reachability of Perturbed Systems and Min Sup Problems”.
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Integral condition for resilient reachability

The Riesz-Fréchet representation theorem and the definition of adjoint
maps simplify the previous Proposition and remove all dual terms.

Theorem 1 (Integral condition)

G is resiliently reachable at time T from x0 if and only if

max
h ∈ U

{
〈h,eATx0 − xgoal〉 − sup

‖u‖L2
=1

{∣∣∣〈h,∫ T

0
eA(T−τ)Bu(τ)dτ

〉∣∣∣}

+ sup
‖w‖L2

=1

{∣∣∣〈h,∫ T

0
eA(T−τ)Cw(τ)dτ

〉∣∣∣}− ε} ≤ 0.

Condition less abstract than the result of Delfour and Mitter, but still
not easily computable.
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A driftless submarine

Many systems, including the underwater robot are driftless, e.g. Vela
et al.9 or Siciliano and Khatlib10. With A = 0, the dynamics become

ẋ = Bu+ Cw x(0) = x0,

and from the Integral condition we derive

Theorem 2 (Driftless condition)

G is resiliently reachable at time T from x0 if and only if

max
h ∈ U

{
〈h, d〉+ g(h)

√
T
}
≤ ε,

with d = x0 − xgoal and g(h) :=
∥∥C>h∥∥− ∥∥B>h∥∥.

9Vela, Morgansent, and Burdick, “Underwater locomotion from oscillatory shape deformations”.
10Siciliano and Khatlib, Springer Handbook of Robotics.
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Intuition

The resilient reachability condition is max
h ∈ U

{
〈h, d〉+ g(h)

√
T
}
≤ ε, with

d = x0 − xgoal, g(h) :=
∥∥C>h∥∥− ∥∥B>h∥∥, and h∗ the argument of the

maximum.

h∗ maximizes 〈h, d〉, so it drives the system away from xgoal.

Along direction h, g(h) quantifies the difference of strength
between undesirable inputs and controls.

sign
(

max g(h)
)

tells which input is the strongest.

h∗ is the travel direction giving the most strength to the
undesirable inputs over the controls.

So h∗ is the worst direction for resilient reachability.
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Evolution of reachability with time

In the Driftless condition 〈h, d〉 is bounded, while g(h)
√
T grows

unbounded with time, so the sign of the maximum of g(h) dictates the
evolution of reachability with time.

Theorem 3 (Time evolution)

If max
{
g(h)

}
> 0, there exists a time τ(d, ε) after which G is not

resiliently reachable from x0.

If max
{
g(h)

}
= 0, the resilient reachability of G from x0 depends

on the distance d = x0 − xgoal.

If max
{
g(h)

}
< 0, there exists a time τ(d, ε) after which G is

resiliently reachable from x0.
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Application to the underwater robot

The nominal dynamics of the underwater robot
before the accident are

ẋ = B̄ū =

[
10 1 0.5
0 −1 0.5

]u1u2
u3

 .
u1

u2
u3

When losing control of u3, B =

[
10 1
0 −1

]
, and C =

[
0.5
0.5

]
, then

max
{
g(h)

}
< 0, so any target ball becomes resiliently reachable after

some time.

However max
{
g(h)

}
> 0 when losing control of u1 or u2.

Therefore, the robot is only resilient to the loss of u3.
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A sufficient reachability condition

The maximum of g(h) = ‖C>h‖ − ‖B>h‖ can be difficult to compute,

so we calculated an upper bound of g(h) using σC
>

max, the maximal

singular value of C> and σB
>

min the minimal singular value of B>.

Theorem 4 (Sufficient condition for reachability)

If σC
>

max < σB
>

min, then max
h ∈ U

{
g(h)

}
< 0.

This result derives from

 ‖C>h‖2 = h>CC>h ≤ ‖h‖2
(
σC
>

max

)2
‖B>h‖2 = h>BB>h ≥ ‖h‖2

(
σB
>

min

)2 .
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Application to the underwater robot

Recall the dynamics of the underwater robot
before the accident:

ẋ = B̄ū =

[
10 1 0.5
0 −1 0.5

]u1u2
u3

 .
u1

u2
u3

When losing control of u3 the singular values are:
σC
>

max ≈ 0.7 < σB
>

min ≈ 1, the sufficient condition is verified, so the robot
is resilient to the loss of u3.

However, for the loss of u1 or u2 the inequality is not verified, so the
sufficient condition is inconclusive about the resiliency of the robot.
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Conclusion

We derived an analytical condition for resilient reachability in linear
systems and two simple conditions for driftless systems.

Future work:

Non-driftless systems.

Inputs with other types of bounds.

Resilient systems.

Control synthesis.
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